
1%1 INTRO

- At the end of  our last section  we worked out the

Laplacian In any OCS .

- The  most basic , idealized eqn .
for a Circular  

vibratingdrum or  membrane looks just like the wave

eqn for a string ,
wl 172 replacing the 4%1×2 .

722-4,0 ,t ) - ÷zd2tdf9I=o÷,E¥€ -

⇒
 eight  of pt . ( p ,¢ )

abovel below Eq .
@

time t

- There are lots  of solutions to this PDE_
,

and we 'll

talk about this  in  more detail later . But for  now
,

let's focus on
\ radial solutions

'
- Sol 'ns that  don't

depend an ¢ .

Then :

data + tweet
'

- ⇐ DI .

=o

- Next  month we 'll discuss techniques for solving this

sort  of PDE
,

For  now , we 'll simplify again & only

Consider what we 'll Call
' NORMAL MODES

,

'

They
take the form

c-

Most Soltis RONI look

Zlp ,
t ) = Rlp ) TC t )

like this ! More later .

- A solh  of this form only works  if Rlp ) E
,

Tlt )

satisfy :

←←
For some

da÷tf= - k2v2T p2dIIpz + pd¢Ip + k2p2r=o
Consent

K !



- The 1st
eqn  is pretty easy , right ? T could be a Cos

or sin
, E

,

since the eqn .  is linear its general solh  is

c- kv is  w !
Tlt ) = a

,
cos ( kvt ) + azsin ( kvt )

- But  what about the 2nd
eqn

? Doesn't look familiar
,

and if  we try something simple like Rcp ) ~ past
'

that doesn't work ,

- But  it has to be something .

So whatever  it  is
,

lets
'

assume  it Can be written as a series around

p=O ( so a Maclaurin series ) .
That seems

reasonable
, right ? Its just a vibrating drum head

. That

seems like it should be well - behaved E
,

therefore

admit some kind of series description .

ASSUME : Rlp ) = Co + C
, pt Czp2 + C3p3 + Cy p4 + Cgfst . . .

Rkp ) = 0 + C
,

+ Zczp + 3C3p2 +  4Cyp3 + 5[sp4t . . .

R "lp) = 0 + 0 + Zcz + 6C3p + 12L ,p2+ZOCsp3t . .
.

p2daYh + pdatf + k2p2R=O

↳ 2Czp2+6C3p3 +124ft + 20C
, p5 + . . .

+ C
, p + 2Czp2t3C3p3 +  4Cyp4 + 5csp5t . . .

+ k2Cop2 + KZC
, p3+ k2Czp5 + . . . .  = 0

⇒ 0 = G. p + ( 4Cz+k2co)p2+ ( 9cg + KZC
, )p3

+ ( 16 Cy + k2Cz ) p4 + ( 25cg + k2C3)p5 + . . . .



- Okay
,

for this to work - for Rlp ) to have the

sort  of power series description We assumed - this

series we get for the ODE must vanish term - by -

term
.

- That  is
,

the Maclaurin series for Zee Is

0 = 0 + 0 .

p + 0 . p2 + 0 . p3+ 0 . p4 + . . .

So we have :

C
,

= 0

4Cz + k2 Co = 0 ⇒ Cz = - tyk2co

9 Czt KZC
,

= 0 ⇒ Cz=O blc 4=0

164 + k2Cz = 0 ⇒ Cy = - To k2Cz = ¥ k2Co

25 Cs + k2 Cz = 0 ⇒ Cs = 0 blc Cz=o

36 cg + k2 Cy = 0 ⇒ Cg = - 3+61<24 = - ¥4 k2Co

- All the odd powers have Coefficient zero , Nothing in

the eqn . tells  vs what Co is
,

but subsequent terms

are :

Rlp ) = Cox ( I
- f- k2p2 +6+4 k4p4 - ¥ , k6p6+ . " )

- We have one unknown here : Co .
And that makes

sense - when  we solve the wave eqn for  a string
it doesn't give  vs the amplitude !

- ( Wait - shouldn't we expect the unknowns For a 2nd

order  eqn ? Yes
,

but  we eliminated one  assuming Madamn ! )



- In this section we 're going
to learn how to solve

ODES ( E
,

some  other eqns ) by assuming that the

Sol 'n can be written as a series . Could be a

Maclaurin series ,
but  we 'll also see Taylor series E;

other sorts of series as well .

- Let's
go

back to example we just  did :

0 = p2×(4Cz+k2co ) + p4x(16Cy+k2Cz ) + p 6×(366+64)

+ p8x( 64cg + k2C6 ) + . . .

- Clear that Coeff ,  of p2nt2 always related to coeff .

of ph by :
"

←
RECURRENCE

( Zn  + 2) 2Czn+z + 1<2 Czn = 0
RELATION

"

- A RECURRENCE RELATION tells vs how terms in

our series relate to the previous terms
.

Once

we have the recurrence relh we solve it iteratively
to get an EXPLICIT form  of the Cn .

[
2n+z

= - k2(2n+z)2 Czn

Cz = - 1¥ Co

cy= - ky÷cz=tn2lE÷ co
-

Cy = - kg÷ Cy =L -173 #
co Sum

gies  a
"

BESSEL
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÷
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- Before we can learn to  identify E
,

solve recurrence

relations
,

we 'll need to review some techniques for

working with Suns .

- After that
, we 'll apply this technique to general

equations .

Then we 'll consider some equations that

frequently arise In physics ,
and the families of

functions - defined as finite  or  infinite series - that

solve them .

F# WORKING WITH Suns

- Sometimes a series Sol 'n  of a DE has a finite

numberof terms
,

and sometimes it's an  infinite sum .

- Either  way ,
we 'll always start  w| an  A series

,
work

out  recurrence relations based on the DE
,

and see

what  it gives us .

- so  it's useful to  review some techniques for working w/

A series
, especially ways of rewriting them or

combiningtwo or more series into a single series .

-
Most of this Is covered in section 12.2 of FE

.

F
.

- Sometimes we see a series where the terms

alternate
sign .

We account for this w/ a factor like

( -1 )
n

inside the sum ;
1

,  -1,1 , -1,1 ,  -1
,

...

a

1- tz +±
,

- tg + to-3 'z+ ...  = Ioc . , ,n #
←

'
' ± '±'  ' the ,

' "

tz - at + ¥ - st,
+ z÷g - in  = ⇐ t IT

"

# Could also  van

c- tnn
' '

!



- It's also common to encounter a sum that  involves only
even or odd powers of some quantity .

For  instance
, maybe

only even powers of  X appear .
We 'll label each term 's

Coefficient  in the sum  w/ its power ,
so :

Co + Cz XZ + CyX4 + C6X6 + . . ,

- How do  we write this as an a sum ? since
any

even # Can be written as 2h for some n= 0,1 ,4 . . ,

as

Co + Czx 2+4×4 + C6x6 + , . ,  = [ Czn ×2 "

he  0

- Likewise
,

for a sum  w/ only odd powers Of  ×
,

we

Can  write any odd # as Zntl w/ n=0
, 1,2 , ...

,

So :

C
,

+ ↳ X3tCsX5 + Cz X7+
. . .  = e⇐[zn+

,
X2n+l

- And sometimes It  is useful to break a sum  w/ both

even E. odd terms into separate even & odd sums :

%noCnXn
= Co + GX + CzX2tC3X3 + Cy Xt + ↳ X5t . . .

= n¥gCznX2 "

+ n§oCzn+
,

X2ntl

- But the sort of  manipulation we 'll do most  often  is

'

re - indexing
'

one or  more sums so they Can be

Combined into a single sum

- For  instance
,

we might find ourselves adding together
two A series of the form

¥
 
on . Ln - l ) . Cn X

" -2

+ ⇐oL Cn .  X
"

+ ( OTHER STUFF )
7

same coefficientsshow vp%both but  wldiff , powers of  ×



- Lets write  out the 1st several terms of both series
.

1st : 0 . Co .  X
- 2

+ 0 . C
,

.  X
' '

+ 2. 1. CzX° + 3.2 . Cs X
'

+  4. 3. CYX 't
. . .

ZNI : X co .  X° + LC
,

×
'

+ j Cz×2 + L [3×3 + XCy×4+ . .
.

- The same coefficients appear  in both series
,

but  w/

different powers ofx . Also
,

even though the 1st series

looks like  it  starts @ Xt
,

the 1st two terms are zed ,

So we should be able to write all this as a single

sum
, right ?

KITZNI : ( Zcztdco )×° + ( 6C3+LG ) X
'

+ ( 124 + Lcz ) . X2

+ ( 20cg + Lcz ) ×3 + . . . .

= n⇐ ( ( n +  2) ( nti ) Cnn + L Cn ) Xn

- How  did I get the factor  of lnt 2) ( NH ) ? Did I

guess  it ? No
, I RE.IN#xED the 1st sum

.

First :

as as

E n.tn - i ) . Cnxn
-2

= I n.cn . , ) .cn .  xn
-2

←

BK  n=0&n= '

terms are Zed .

n=o h=2

- Now
,

I want this to be a sum that  starts @ n=o &

has powers of  Xn
, so I Can Combine  it  w/ the other

sum . I do this by shifting n → n+2 .

⇐gn . ( n - I ) . Cn . Xn
-2

= n⇐ (

n+2)lnH)Cn+z÷
Every n here ...

...  is  replaced by nt2 here ,

↳ ⇐
 
on .cn - I ) cnxn

-2

= ⇐olnt2)( ntl ) Cn+zX
"

( Write  out 1 # several terms E. cheek ! )



- Combining sums like this will be one  of our main tools

for finding recurrence  relations blt terms in a series

Sol 'n  of some  eqn .

- For  instance
, suppose I told you that when I add

those series together they should cancel . Then :

⇐ ( ( nt2XnH ) Cn+z + Lcn ) X
"

= 0

n=o

- If a power series is supposed to be zero t  X then

it  must vanish term - by - term . For  instance
,

the X3 power

Can't Canal the xt
power

.
So :

( nt 2) ( ntl ) Cn+ztXCn = 0 ⇒ Cntz = -

(M¥+1
,

Cn

- Neither Conor C
,

are determined by this condition .

But all the subsequent terms are .

Cz = - ¥ Co Cy = - FzCz= £,
Co C6= - ¥0 Co et .

Cz = - f- C
, Cs = - ±zoC3= Io C

, Cz = - 5¥ C|

←
BTW ,

this  is

↳ ME Cnx
"

= Cox ( I - Ex2+ ET X4 - ¥ X6 + . . . ) cocoskx )

+  C
,

sin ( xx ) !

+ Cix ( l - Fox
's

+ Fox 's
- 5¥ ×7t . . . )

- Sometimes we add two  or  more sums so they have

the same powers of  X
,

but they don't '  '

overlap
"

- One

series has one or more extra terms
.

n§g Cn .  Xnt
'

+ €0 n.cn ,  xn
-1

=P
RE ' INDEX 2¥ Sum :  n→n+z

- -
⇐ ncnxn

"

→ £%n+2)cn+zxnt '

as

Cox
'

+4×2+4×3 0 - Cox
"

+ l ' 9.  × 0+29×1
= 4×0 + [ ( ntzkntzxnt

'

+ C3×4 + . . .

+3 CZXZ +4 CyX3 + .  . .

n=o



1%-1 SERIES SOLUTIONS OF LINEAR ODES

- As described in  our motivating example , We're going
to solve Certain differential equations by assuming
the Sol 'n can be written as some sort  of

power
series .

-
For now ,

we 'll focus on Maclaurin series - an expansion

around x=O or p=o ,
etc - but later  we 'll consider

Other sorts of power Genes .

- The eqns we 'll study have the form

Y
"

( x ) + Flx ) 44×7 + glx

)y(
x ) = hlx )

where flx ) ,g( x )
,

E. hlx ) are Analytic functions
.

( They are

differentiable @ x=O E. have Maclaurin series of their

Own , So  X2 or e× is okay
,

but TX isn't , )

- We could also allow more ( or fewer ) derivatives
,

E
,

assume all coefficients are analytic
,

and this approach

would still work ! But we 'll mostly look @ 2nd  order

linear ODES
.

- The strategy is easy : Assume  ylx ) can be written

as a series
, plug it  in to the eqn ,

E
,

Find

recurrenceretlns for the terms in the series
.

EI y
' ( x ) + Zxxylx ) = 0 w/x= const .

÷It,I¥EoYIm}⇐ncnxn
'

+ Eoucnxnt '
= o



⇒ 0 = O.co .X
-  '

+ 1. C
,

.x° + 2.  g.  ×
'

+ 3. Cz .X2 +  4.  Cy .  -13 + .
. .

+ Zx . ( Cox
'

+4×2+[2×3 + Czxtt . . . )

= C
,

.
 X° + ( Zczt Zxco ) x

'
+ ( 3c3+ZxC , )X2

+ ( 44 + Zxcz )X3 + ( 5cg + Zdcz ) X4 + . . .

- So the eqn .  is satisfied if

C
,

= 0 Cz = - dco Cz = - ZZLC,
=O Cy= - Ecz = Eco

C
,

= - ¥XCz=O Cy = - tzcy = - 3×4 Co ... .

↳  ylx ) = Cox ( 1
- xx

'

+122×4 - 3×4×6 + . . . )

p
1st  order  ODE ⇒ One  unknown !

- There's a pattern here !

Ylx ) = co Font
.

txxz )
"

= co e-
42

- Of Course
, we knee this was the Sol 'n :

Y
'

+22×4=0 ⇒ ¥,= - Zxx ⇒ ¥x buy = . Zxx

⇒ lny = - xx2+ const  ⇒ ylx ) = co e-
××2

- But we don't want to rely on spotting patterns in

the Cn
,

so can We derive Cn by re - indexing
the two A series & working out a recurrence

relation ?

⇐on cnxn
"

+ Zx ⇐ocnxnt '
= o

- -

The no term Can  we  shift summation Variable

Vanishes so the power  of  × is n -1 ?



n  →  n - 2

÷Lg ncnxn
"

+ ZXI Cn
. z

Xm
'

=On
-2=0

→ P¥
,

n Cnxn
'

+ Zx ⇐eCn
. zxm

'
= 0

T Same form
,

but  one
T

starts @ n=l E
.

other

starts @ n=z .

e
-

→ 1. c
,

.x° + < ( ncn + Zxcn . z
) Xn

"

= 0
n=z

- Once  we have it  in this form we learn the

following :

(1) Co only shows up When n= 2 ( Zcz +2×4=0 )

so  it  is not  determined by the eqn .

(2) C
,

= 0
,

bk that's the only way
the

Constant term  on the LHS of the eqn

Can Vanish .

(3) The recurrence relln for the remaining
coefficients is

Ztcn
.

ztncn =O ⇒ Cn= - ¥ Cn
. 2

- Since C
,

= 0
,

it follows that all the odd Czn+ ,

are also zero .
What about the even coefficients ?

Thats when n= ZK for 1<=0
, 1) 2,3 ,

...
:

Czk = - ¥ECzk . z

= - € Czk . z



-
Now

,
there are various techniques for solving

recurrence  rellns
,

but they are a bit outside the

scope of this class . Let's look @ the 1st several

terms :

k=l : Cz = ( - 1) F . Co

k=2 : Cy = C- D . E . ( t ) F . Co

k= 3 : [6 = C- I ) £ . C- I > E . C- DF . Co

:

a
k

= ( - 1)
K  IK

K !
Co

⇒ ylx ) = co f÷ti)k×k¥"= co e-
ax 2

[ Sol 'n Contains one unknown bk

it  was a 1st order ODE

- Lets try one more example .

We want to solve the

eqn y
' '

- Xy

't
Zy=0 , subject to the Conditions

y ( o ) = O E
, YYO ) = I

.

y=¥oCnXn ⇒ ⇐
 

onln - Dcnxn
'

- ⇐on .cn .xn
"

+
2¥ocnxn = 0

- -

a- €[ ( ntzknti )Cn+z×n 2 ( n - 1) Cn
. ,

X
"

ht  2=0
h -1=0

as

T
0 = n⇐z( n +  2) ( ntl )Cn+zX

"
- ¥,(n- 1) Cn

. ,
X

"

+
< Zcnxn
n=o

a TY it
n , -2  d. n= -1 terms

First  non - Zero

Vanish term @ n=Z



→ 0 = ⇐o( ( n+2XnH)Cn+z +2 Cn ) Xn - ¥2 In - I ) Cn
. ,

x÷Write  out the 1st two terms
... then  Combine  nzz

in this  sum ( n=o  e; n=i ) , . .

terms  wl this  sum .

= ( 2. 1. Czt Zco )X° + ( 3. 2. Cz +2C
,

) X
'

+ . . .

i. .  + ⇐z[ ( nt  2) ( ntl ) Cn+z + 2 Cn - ( n - 17 Cn
. , ] Xn

- The 1st two terms ( x°i
,

x
' ) give

:

Cz = - Co Cz = - ¥4
- The remaining terms satisfy the recurrence rel 'n :

C
n+z

= (n-DCn-i-2= ←
n 72

( n + 2) ( nti )

Go
,

the 1st few terms are :

4 = 4j,}C2- = ÷zc ,
-

'

El - co ) = to Co + iztc ,

Cs = 2'[z-2= = To tco ) - To ftzc , ) = - To co + ztocl
20

cg = 3.C3-24_ = jobs - ¥4 = - ztociato co - foci
30

= - Ioc ,

- atoco

- So assuming I haven't  made any algebra  mistakes

1 who knows ! ) the 1st few terms of a Sol 'n are :

y ( × ) =

,

Co . ( 1 - x2 + to x4 - Fox
's

- qto x°+ . . . )

/ + C
,

. ( x - tzx3 + fzxt + Fox 's
- To ×6+

. . . )
→

Two  unknowns
, as  we 'd

expect for  a 2nd  order ODE



- Notice
, though ,

that I said a- solh E
,

not the
Sol 'n . Our problem specified YLO ) = O E

.
YYO ) = I

.

What does this mean for our series Sol 'n ?

ylx ) = ⇐
 

ocnxn ⇒ ylo ) = Co blc  all the other terms

vanish @ ×=O !

YCO ) =O ⇒ Co = 0 c- Wipes  out half  of  our solln !

Y
'
( × ) .

. Ion .cn .
 Xn

"

= O.co .
 x

'
 '

+ 1. C
,

.x°+ 2. Cz .x
'

+ . . .

¥
DE has  many Sol 'ns

,
But  a specific

y
'
( 0 ) = C

,
= 1 Sol 'n  requires  ylo ) = .

. .

, y 'lo)= . . .

,
etc .

- Specifying ylo ) E
. yko ) fixes Co & C

, ,
and since  all

Our Cn are related to Co E. C
, by the recurrence relhs

we have a unique Sol 'n to our problem !

y ( × ) =  × - tzx3+÷zx4 + 3+0×5 - ,±go×6+ . . .

- so this Is basically how all series 5011ns work ,

We assume a series
, plug it  into the eqn ,

find

the recurrence relhs and solve them
,

then use any

conditions to narrow down the Sol 'n
.

- As we said @ the beginning ,
this approach works

for any DE of the form

Y "lx ) + Flx )y4x ) + gcx) ylx ) = hlx )

as long as F. g ,
E. h are analytic ( can be represented

as a power series ) .



- In later sections we 'll look @ other sorts of series

5011ns . But first
, we're

going
to apply what we just

learned to an  important DE that shows
up

all over

the place  in  your upper
- level physics courses .

¥11 LEGENDRE 's EQN & LEGENDRE POLYNOMIALS

- As an application ,
we're going to study an  eqn .

that shows  up when we try to solve Laplace 5

eqn  in SPC ← ( See HW 7 ! )

( l - x2 ) Y "lx ) - Zxy
' ( x ) + llltl ) y ( × ) = 0

- Series sollns of this eqn will lead vs to OW 1¥ class

Of special functions : LEhE#RE POLYNOMIAL
.

- Let's start  w/ a similar e9n

g
some constant

( I - X2 ) y "lx ) - 2×44×7 + uylx ) =0

- Assume a series Sol 'n : ylx ) = ¥noCnX "

→ 0 = ¥0 nln - I ) Cn . ( xmexn ) - 2 °Eon . Cnx
"

+  UPEOCNX "

= TENN - ncn .  Xnt + ⇐o ( - nln - 1) Cn - Zncntucn ) Xn

.  →  ntz

= ¥z( n + 2) ( nti ) Cn+z Xn + ¥0 ( n - nlnti ) ) cnxn
10

↳ 0 = ¥0 [ ( ni  . 2) anti ) Cnn + ( n - ninth )cn]× "

( u - nlnti ) )
RECURRENCE RELW : Cn+z =

-

- Cn
( ht 2) ( ntl )



- So  our series soln has Co & C
,

undetermined
,

like the

other LINEAR ODES we've seen
, w/ Cn given by the

recurrence relh t n >, 2 .

- Now
,

look carefully @ the recurrence rein :

Cn+z = -

(~nh# nzo
( n +  2) ( n+ , >

Cn

- If  m  is just any old #
,

We 'll get two A - series

5011ns . But  if  n  = llltl )
,

where l E Z (
'  '

l is

an  integer
" ) something Interesting happens :

Cn+z = -

(lUt=)

f
' ( ntz ) ( n+ , >

Cn

Once  n  reaches l
,

the numerator

Vanishes & Cn+z=0 , Cn+4=0 , Cnt6=°/ - '  - '

- IF l is an ODI integer ,
then  all the odd terms

in the series will Vanish for n > l
, giving a Fine

series .
The even terms will still be an A - series .

- If l is  an Event integer ,
it's the opposite .

- If  we write  out the 1st few terms in the Sol 'n
,

we

get :

ylx ) = Cox ( l - luztI×2 + 4+3741*27×4
-

( l +  5) ( lt3)( ltl ) l( l - 2) ( l -4 )

-6,1×6 + . . . )

+ C
,

× ( × - Ut2}!I'×3 + (1+47454)*-37×5 + . , , )



- So  if l is an odd integer the C
,

series stops @

the xl term
,

but the Co series is  infinite .

- And if l is an every integer ,
the Co series stops @

the xl term but the C
,

series Is infinite .

- A Finite series always Converges ,
so  in either case

( l an  even  or  odd integer ) @ least one of our solhs

is a finite polynomial in X . What about the infinite

series solh ?

- To check convergence we can  use the RateTESI

nl→mol9÷IYY =L;molY±YnI÷Ynl1×4=1×4

~

- nn÷ if  n > > l

- So the A series solution  only converges for 1×21<1
.

But  it  diverges For 1×171 ! For  instance
,

look @ l=l :

l=1 :  ylx ) = C
,

x + co . ( l - ×2 - ¥x4 - ¥X6 - ¥x8 - tax '0+ . . . )

↳  yl±1)=±C ,
+ co . ( ¥1- tz - st - tz -to

DIVERGE

- Okay ,
For le 7L we have two solhs : a finite

polynomialof  order l ( which is finite F  × ) and an A

series which converges
far 1×1<1 but  not @ 1×171 .

-
The former are

"

Legendre Polynomials of the 1st kind "

and we  denote them by Pdx ) . The latter are
"

Legendre

Polynomials of the 2nd kind
,

"

which we denote Qelx ) .



- So a general solln of Legendre 's equation ( u=l(l+D ! )

is :

ylx ) = a
,

Pelx ) + Az Qelx )

- Now there's one small problem .

These  often show  up

In 5011ns of Laplaca eqn  in SPC
,

with X = cos O
.

( You'll show this  in HW 7 ! )

- -0 is the polar  angle , w/ 0=0 @ the NP & O=  it @ the SP ,

But -0=0 is  ×= 1 & O= IT is  X= - 1

, so the Qe all

dives @ the NP E
.

SP !

- For this reason , we usually discard the Qelx ) for

most physical applications , unk= we aren't Considering

X=±l .

We 're  now going
to focus  on the Pelx ) .

RESULT : H non - negative l EZ
,

F precisely one

solh  of Legendre 's
eqn .

that Converges t 1×1<-1 .

- The Pelx ) are the part  of  our  ylx ) Sol 'n proportional
to  either Co if l is even  or C

,
if l is odd

.
The 1st

several are :

Polx ) = 1

P
,

( x ) =  X

Pz ( x ) = £ (3×2-1)

Pz ( x ) = zt ( 5×3-3 × )

Py ( × ) = tg ( 35×4.30×2+3 )

P
,

( × ) = tg ( 63×5 - 70×3+15 × )



- Here are some properties & important facts that follow

from  our  derivation :

(1) Pelx ) is even /odd across X=O for  even /odd l .

Another ( useful ) way to state this  is

Petx ) =L . 1) lpelx )

(2) Pelx ) is a polynomial of  order l . That  is
,

Its

largest power  is  XD
,

followed by ×t2
,

and so  on

down to  × ( l odd ) or  X°= 1 ( l even ) .

(3) Since the Pelx ) have a finite # of terms they

are finite tx .
But once  × gets large they grow

like  Xl
.

We  usually only use them  on - I EXEI

( or OEOE  IT in SPC
, w/ X= cos O ) .

(4) The Pzn+ ,
( × ) are odd ,

so Pzn+
,

( 07=0
.

(5) Pel 1) = 1 t l
, even  or  odd

.
This  means

Pznl - 1) = 1 & Pzn+
,

l . 1) = - 1
,

- The 1st few Pelx ) are simple ,
but as l gets bigger

there are  more terms w/ large Coefficients .

For example

pzo( × ) =
341461163420T ×2°+ , . . .  - 29,113,619,53L ×

'0

+ . , . .

262,144 65,536

- This seems pretty Complicated . Do  we just let a computer

handle it ? There  is actually a pretty convenient  E
,

compactformula for Pilx ) .
It's useful far  obtaining a

particularPelx > you've forgotten ,
and also for working out

integrals  involving the Pe .



- RODRIGUES ' FORMULA  is :

Penn =z÷µad÷e( 1 xtise )

- We're  not
going

to prove this ( though I can post

a proof  if  you
'd like ! ) but lets at least check for

one value of l
, say

l=2 :

Pzlx ) Ez÷uad÷z( 1×472 ) =ts¥x( 21×4 ) Zx )

= tz¥×(x3 - x ) =

'

zl 3×4 ) ✓

- Now
,

this  isn't the only useful Formula far recalling
the LP . It turns out that L.P.

,
like  most families of

special functions obtained as solhs of differential equations ,

have  what  Is Called a GEIERAMIGFUNC.tl# .

- A generating function is ( for  our purposes ) a function of

two variables such that a power series expansion  in  one

of the variables has some set  of special functions ( of the

other  variable ) as its Coefficients . Schematically ,
it looks

like this :

c-
Powers ( lzo ) of  one  variable

as

G( X
,

h ) = [ hlpelx ) ←
lip '  of the other  variable

to

- For Legendre Polynomials of the 1st kind
,

the generating
function  is :

I

G ( x ,h ) =

F-
w/ 1h14 E

.

1×1<-1
I - Zxh + h2



- Its possible to show that the Coefficient  of hl in the

power series expansion  of Glx ,h ) satisfies Legendre s eqn .

But for  our purposes ,
its

'

enough to show that the 1st

few terms give  what  we expect

- Since both 1×1<-1& Ihl < 1

, 1h'
- Zxhlis always <1. So :

Glx
,

h ) = ¥gw/ X  = h2 - Zxh

Maclaurin  series

= 1
- tzx  + 3gX2 - ,E6x3 + . . ,

N for the

= I - tz ( h2 - Zxh ) + 3g ( h
'

. Zxh )2 - ¥ ( h2 - Zxh )3+ ...

= I - tzh2+  xh + Zg ( ht
- 4×43+4×242 )

- I ( h6
- 6×45+12×244 - 8×343 ) + .  . .

= 1 + h .  ×  + h ? ( 3zx2 . tz ) + h3 . ( Ezx3 - 3z× ) + . ...

T T - -

Po P
, Pz Pz

- The generating function  is  important for  many reasons
,

but  we will focus on two of them .

- First
,

it  reveals a number of special properties &

identities
of L . P ,

For example :

Glbh ) =j¥nn .

= ate . =L
= I + h + h2 + h3 + h4 + . . .

= Poll ) + P.li ) h + Pz( 1) h2 + Pzll ) h3 + . . .

⇒ Pel 1) = 1 t l ? 0

- Likewise
, expanding GL - 1) h ) as a power series in h

Confirms that Pel . 1) = C- 1)
l



- But  we can also perform various manipulations on the

series expansion  of Glx ,h ) & its derivatives
,

which leads

to several useful Identities satisfied by the Pelx ) :

1) lpelx ) = ( Zl - 1) X Pe
. ,

I x ) - ( l - 1) Pe .z( × )

z ) xddgpelx ) = lPel× ) + ¥xPl-  '
( × )

Also  REFERRED  to  as

3) c¥×Pe( × ) - ×¥×Pe
. ,

1 × ) = l Pe
. ,

( x )
'

RECURRENCE Reins
"

4) ( 1 - x2)¥×Pe( x ) = l Pe
. ,( x ) - xlpelx )

5) ( Zltl ) Pew ) = ¥xPe+ ,
( X ) - ¥×Pe

.
,l× )

6) ( 1 - x2 ) ftp..li/)=lxPe..lx)-lPelx )

a

:

- The second reason is that  it helps  vs work  out  various

integrals  involving the Penn .
But  why would we care about

that ? Well
,

I 'm glad you asked . .
.

.

- We've been solving differential eqns by assuming the

5011ns are analytic . And that seems reasonable
,

because

we're doing physics ,
and physical systems usually

't
don't

do  anything mathematically extreme , so  its not a wild

assumption to  say
that a solln  describing some physical

system  is probably analytic : Probably fine
,

at

F least for  some

Y( X ) = Co + C
,

X + CzX2 + Cz X3t Cy X4 + . , , range of  × !

- But  if this  is a Sol 'n  of an equation that  involves

Legendre 's eqn for  different  values of l ( we 'll see why

this  is  next  month ) shouldn't  it also be a Combination  of Pdx ) ?



- Heres another  way to see this .
Look @ the last Few Pelx )

E
,

"

invert
" them to solve for  ×° , X

'

, X
'

, etc . . .

Polx ) = 1 P
,

( × ) = X Pzlx ) = 3zx2 . tz = } ×2 . tzpolx )

→ ×2= § Pzcx > + tzpolx )

131×7=52×3 - EX = E×3 - Zzp,
( x ) ⇒ ×3= }=P3( x ) + ftp.lx )

-

Andso  on ! So  our power  series for  ylx ) could also be

written as

Y ( x ) = Co + GX + CZXZ + [3×3 t . . .

= Co . Po + C
,

.P
,

+ Cz . ( 2zPz+tzPo ) + Cz . ( ¥Pz+¥P , )t . . .

= ( Co + tzczt . . . ) Polx ) + ( C
,

+ ¥ Cast . . . ) P
,

I × )

+ ( Eg Cz + . . . ) Pzlx > + ( 25 Cz + , . . ) Blx )

↳ ylx ) = ⇐
 

ocnxn = e¥oaePelx )

- In  other words
,

the Pelx ) are a
"

different basis " for

our power series expansion ,
and we can  represent  ylx )

as some Combination  of Legendre polynomials . Does this

Sound familiar ?

- This is exactly what  we did w/ Sines E. Cosines when

we studied Fourier Series
.

We 'll do exactly the same

thing here & call it a Legendre series .
And just like

FS .  we 'll use or analogy w/ vectors E. dot products to

understand how much of each Pelx ) is needed for

the Legendre series representation of a particular  ylx ) ,



- Like sin ( nx ) & coslnx ) on - TEXE IT
,

the Pelx ) form  what

We Call a
"

Complete , orthogonal set  of functions
"

on - IEXEI
.

So  we can  use them to build up a representation  of
any

reasonably behaved function on that  interval
, just like we

can  represent  a vector by adding up  unit vectors in the

right proportions

- We just  med to Figure out
"

how  much
"

of each Pelx )

is needed for  a particular function
.

Flx ) = ?Eajpd×T
hire " F '×'

,
what  are these ?

- This just like a F. s .

,
so  is there something like

Fourier 's Trick ? Consider the integral of two Pelx ) .

I claim :

§l×Pe(x)Pk( × ) = {
0 if l¥k

Const ,  if l=k

- In  other  words
,

the Pelx ) are orthogonal on - IEXE I

just like coslnx ) & sin ( nx ) on - He  ×E  IT

- Is this plausible ? True  if  one  of l ,k  is even & the

Other  is  odd
, since Pelx ) Pkcx ) is an  odd function  of

× in that can . And it's true for
, say ,

to i. k=2

or l=l & K =3
.

But  in general ?

- Using either the generating function Glx
,

h )
,

or also

by using Legendre 's equation , we can prove a lovely identity :

¥
,

( ( 1 - x2 ) ( Pklx ) Pjlx ) - Pdx)Rdx) ) + ( llltl ) - HKH ) ) Pdx )Rd×)= 0



→ §lx¥x( (1×2) ( Pkpe
'

- PEPE ) ) + ( lllti ) - HKH ) )§dxPePk = 0

÷2) ( Pkpe
'

- Pepe
' )|j= 0

→ ( lleti ) - KCKH ) )[dxPklx)Pelx) = 0

⇒ fjdx Pklx ) Pelx ) = 0 if ltk

- So  we just  need to work  out the l=k can , But first
,

a very important Corollary .
Since the Pelx ) are finite

polynomials
,

it should be clear that  we can  rewrite any

FlNl# series of  order N in terms  of Po
,

P
, ,Pz ,

... .

, Pn .

k¥0 Ckxk = ¥g b p , IT
Just by expressing the  xk

K k
as  combinations  of Legendre

K
polynomials .

,
1 - Po

,
×=P

, ,
etc . . .

So  if N < l
,

it follows that

[dx Pelx ) × ( Any polynomial of  order N ) = 0

- Now  what about the l=k case ? Using the recurrence

relation

l Pelx) = x¥xPelx ) - ¥xPe .
,l× )

for  one  of the factors
,

and after some integration - by . parts :

flax Pecxy = ze÷
,

←
check : fidxp.

" # x '=t×3f= }

⇒ fjdxpcx) Pdx ) = { 02
l±k

2ft
l=k



- This  Integral Is our
'  '

inner product
" for the Pelx )

,

and we 'll use it the same way we used a similar

integral for Sims & Cosines !

- That  is
, suppose you have some function FW on - KXEI

,

and you  want to  write it as a LEhENDRE_ SERIEI .

Flx ) = fo cjp(×T
Hau do  we get these ? How

much of  each pelx ) ?

- To find the coefficient Ck of the lek term
, multiply both

sides by Pklx ) :

Pklx) Flx ) = ¥foCePkl×> Pelx )

←
THIS  is Fourier's Trick

FOR LEGENDRE SERIES !

And now  integrate from -1 to 1 : y /
fjdx Pdx ) Flx ) = Face fjdxpidx ) Pelx )

"

-

¥
, ,

if l=k
,

otherwise 0

= z,÷,
Ck ← All the LFK terms  

multipliedby Zero !

⇒ ck = 2k¥ [dx Pklx ' FH >

g
This is exactly what  we  did w/ Fourier series

,
we're just

using a different basis - Legendre Polynomials instead of

Sims & Cosines



p

- Why would we  want to do this ? Recall how we introduced

F. s .  
- we knew sine waves were the natural modes of a

vibrating string ,
and suspected we Could uae them to

build up more  realistic ( but  more complicated ) motions of

a string that result from plucking or striking it .

- The same  is true here ! Legendre polynomials are the simple E
,

natural solutions  of Legendre 's equation ,
and we use them as

building blocks  of  more Complicated solutions ! You 'll use this

throughout E&M and QM .

EII Flx ) = {
-1

,  
- kx< o

1

,
0 < XEI

co = 20¥ fjdx Pdx ) . Fix ) = tz ( f;dx 1. th + fokx I. 1 ) .

=
'

z ( xl ! +  xlj ) = tz ( o - 1 + 1 - o ) = 0

C
,

= 2¥ fjdx P ,lx ) . Fix ) = 3z ( flax tx ) + fodxx )
= } . ( - txz If +

'

zx2lj ) = E. to  +
'

zttz - o ) = I

Cz = 0 ← WHY ? ( Pzlx) even
,

Flx ) odd ! )

Cos = 23¥ fjdxtshtix ) = E. ( f§xtnlEx3 . Ex ) + f§xlEx3 - Ex ) )
= E. flex '

. Ex
' )H+lEx4 . Ex ) ! )

= E. to + I - E
,

+ E - E
,

-0 ) = E. ( as - keys) = - Is

↳ Flx ) = Zz P
,

lx ) - 7g Blx ) + lot Pslx ) - FE Ptlx ) + . . .

\¥
he Legendre series  representation of Flx '



- A few  important points . First , the conditions for Flx ) to have

a Legendre series  representation are essentially the same  as the

Dirichlet Conditions far the Fourier Series
.

- Second
,

based on  or earlier  result for integrals  of the Pelx )
,

the Lis .
for  a polynomial of  order k Alway stops  w/ the

l=k term : ce=Otl>25 !

F ( × ) = 17×24-32×23 t . . . .  + 7×+90 = %zypzylx ) + Cz3P↳lX)+ . . .  t  Copolx )

- So for  a simple polynomial , finding the Lis ,  May be easier  or

quicker to  do algebraically .

For  example :

Flx ) = 2×2-4×+7  = Copolx ) +  C
, Pilx ) + czpzlx )

= Co + C
,

X  + 3zCzX2 - tzcz

↳ 2 = Zzcz  
-

4 =c
,

7  = Co - tzcz

⇒ Cz= ¥ 4=-4 co = 2¥

- But  in general ,
we Can always find the LS , coefficients via

←
Sometimes  you  can  do then

C
,

= Uz#§x Pelx ) Flx ) integrals for general l
,

~
-

sometimes just the 1st few

]
'

^

- values  of l ,

Coeff ,  of ) Analogous to Ee . # in  our

'  ' Ee "

BK Vector  example
"

EiEe=÷ ,

"

- We  often  work  in SPC where  our variable is X=  cos 0
.

Then

dx = - Sino do
,

X=1 ⇒ 0=0
,

X= - 1 ⇒ O=  it
,

and

fo¥OsinOPecosO)RdcosO)={0g÷l,±k=
.

⇒ Ce= 4¥ fdotosinoplcoso) FCO )



- One last point . The generating function for the Pelx ) was

Glx
,

h ) = 1--1
- Zxh + h2

This comes up
all the time  when  we have a Yr potential ,

like  in gravity or E&M .

z • Mi M
,

^

^ Vgrav (F) = - Gµ -

> E- F
,

IF - Fil IIKJFE
r ,

IF . Fil =Jtr=tr)
←

| ytI = Mirror#
= iffy

>
y

-

X Angle blt
't

)< bltr

F & F
'

Dist ,
from 0¥"

I
,

is  dist .  of M,& "

of pt .  wlpos .  vector from originF

so  if r > r
, ,

then

hn Mi✓
on

"EFFIKIELY
.

F

= - 9¥ '

×oEolIrTPelcos4
)

- The Pe naturally show  up  If  we expand ✓
grav

( or ✓
coulomb ) in

powers  of rlr
,

.

This  isn't  a Coincidence
,

since both satisfy

equations  of the form

D2V=O

away from M
,

( or q ,
) !



F# THE METHOD OF FROBENIUS

- We've successfully applied our A - series technique to several

eqns now
.

It 's powerful & useful & you're going
to see it

a lot .

- But sometimes  you get an  eqn  where a Maclaurin series

just  doesn't  work . It  may give  nonsense
,

or  an  apparently
trivial ( y -0 ) Sol 'n

.

- For  example ,
Consider

XZY
"

+4×4
' +1×2+2 )y = 0

as

YE
 

-2 Cnx
"

:{Re - index  sums
,

etc . .

⇒

0 = Zco +6C
,

× + ¥ny[ln+2KnH)Cn+Cn.z]×
"

w
-

-
And And therefore  all the

So Co=0 ? C ,=o ?
remaining Cn=0 ?

- It looks like the Solti has to be 4=0 , right ? No
,

that can't be right ! If  × was  ready close to 0
,

so that

x2y< < Zy in the last term
,

wouldn't  we have

X2y" +4×41+24=0

Try y~××  
⇒ x= -1 or -2

- The problem was assuming a series Sol 'n that started w/

a Constant .

Instead
,

lets try a GENERAUZED_ POWER SERIES:

as

ylx ) = xs [ cnxn
-

no I coxs + ( ,×st' + Czxst 't
. . .

J

Eqn  will determines



- If  we repeat  our series method we arrive at :

0 = ⇐o( ntst 2) ( ntsti ) Cnxnts + n§z Cn .
zxnts

= ( st 2) ( Stl ) Co + ( st 3) 6+2

)g+⇐e[
( ntstz )( ntsti )Cn+Cn~]×

" "

⇒
 NDICIAL EQUATION '

: ( st  2) ( Stl ) = 0

- We determine s by setting the 1st term to Zero - this

Is the INDICIAEQUAIION .
Here  we get 5=-2 or s= -1

,

so we get two sons ( as expected ) .

- Let's look @ the 5=1 Sol 'n first ,
If 5=-1 then

0 = 0 . Co + 2. 1. C
,

+ ⇐e[ ( ntnn.cn + Cn
- z ] xn

-2

⇒uncut , 4=0
[

n
= - Cnn( n  + i )

cn= - NGIIT → cz= - ¥ , 4= - ¥ =L - MEE

C6= - FI =L -173 off , ...

, Czk =tDk({÷ !

→ yix > =t×⇐.co.uk#I.=c..txEEaskcIIEhEIYnYxI

⇒ ylx ) = ¥2 sinlx ) is the s= - l Solis

- Now check the 5=2 solution .
If s= - 2 then

0=0 . co +0 . C
,

+ %nz[ n . ( n - I ) Cn + Cmz ] xn
-2

-& C
,

both [
n

= -

Cn=

undetermined n ( n - i )

→ Cz= - ¥ , Cy= - ,¥= ¥ ,
... C3= - z÷C , , Cs= - {jt=+s¥ ,

...



- So the s= - 2 solution  is

ylx ) = coxtz ,FeotnkYI÷
,

+ c. ×÷Fec⇒k×"I( Zktn !

=
 SX sin  X

⇒ ylx ) = Coast + c
, Syd c-

In this case ,
5=-2 solh

includes our 5=-1 Solti .

Not  always the Case !

- There were two possibilities - 5=-1 or  s= - 2 - and

the 5=-1 case was included in the 5=-2 Case . So

the general Sol 'n  of this  eqn .  is

ycx ) = coasts + c. Sgt
← Twoexufekcnfemd? '

as

- This approach Is called the
"

METHOD OF FROBENWS
,

"

It visually gives you generalized power series Soltis .

- Wait
... usually ? When does it work ?

- A 2nd order ODE  will have a quadratic Indicia

eqn  w/ two  roots s
,

& sz .

IF both are real &

sz - s
,

is  not an  integer ( including Zero ! ) then  we

get 2 generalized power series solutions .

- But  if sz - s
,

= 0 - a 4¥root of the mdicial

eqn - or sometimes when sz - s
,

E Z
,

we get
a funny sort  of solution .

In those Cases the 5011ns

may be

y( x ) =  y ,
I x ) logx +  yzlx ?

where 4,1×7 & yzlx ) are both generalized power

series .
This  is called FUCHS 's THEOREM

.


