
F# THE 1- D WAVE EQUATION

- Start  w/ the wave equation in 1- d

d2y 1

Tlxz
-

jz
d#

= 0

dtz

-
We are already used to the idea  of normal

modes as good
"

building blocks
"

for more

complicatedways
that

, say ,
a string can vibrate ,

- The normal modes look like a function  of  ×
,

which

describes the shape of the mode
,

times a

function
 of t that  describes its oscillation .

- So let's look for sollns of this eqn
that look

like Flx ) glt )
. Plug this  into eqn

:

dot for dldt

g
( t ) F

'  '

( x ) - fz Flx ) cjlt ) = 0
←

prime frdldx

- Now  divide by Fhnglts :

→ ¥
,

F "c× ' - tg÷ ,
"gtt)=o

- if

FUNCTION  OF  X FUNCTION  OF t

- Something interesting has happened .
The variables

X & t are independent .
So how Can a function

of  × & a function  of t add up
to Zero for  all

values of  × E
,

t ? If  it worked @ X = 12cm & t=5s
,

then  it probably wouldn't  work @ t=9s
, right ?

- There's only one way this Can work  if  × &t are  really

independent .



- Each part  of the
eqn  must be  equal to a constant

,

and the constants  must Cancel :

¥
,

F
"

( × ) = CONSTANT

gets Jct ' = v2× ( same constant ,
}⇒¥

- k¥=°

- Let's assume  our Constant  is  negative ( we 'll see  why

later ) and write  it as
'

- 1<2
'

.
Then :

F "( x ) = - KZFCX ) glt ) = -

k2v2g÷
This is remarkable ! We made a

simplifying guess
about a Sol 'n  of

the PDE
,

and it turned into two

OIES !

- We know how to solve there equations !

Flx ) = A Coslkx > + B sinlkx )

glt ) = C coslkvt ) + D sin ( kvt )

- So  we've found a family of solutions of the wave

eqn  in 1 - D
.

This  is called a
"

separable
"

Sol 'n bk

it Can be expressed as the product  of functions

of each independent Variable .

Flx ) glt ) = ( A coslkx ) + Bsinlkx ) )×( Ccoslkvt ) + Dsinlkrt ) )

- This Is  more Complicated than the normal modes  we 're

used to : there are 5 arbitrary unknowns here ( A ,B,GD ,

& k ) .



- But that  makes sense - differential
eqns

have

multiplesollns & we have to specify things like

boundary Conditions & initial Conditions ( one for

each derivative ) to find a specific solution !

- Also
,

remember that the wave eqn  is LINEAR
-

So  if I add two sollns w/ different K
,

& kz

the result  is still a Sol 'n
. Or I  could add

together a million  of them
,

or  even an as

number  of solhs
.

- The separable solln we just  worked out  is a

general building block
.

We will add them  in

specific Combinations (
using

what  we've learned about

Fourier series ! ) to build more Complicated 5011ns .

- So
, given

a set  of boundary & initial Conditions
,

our strategy will be to
impose as

many
of them

as possible @ the level of separable sollns .

Then we 'll add
up

those 5011ns & figure out

what  must be done to  impose any remaining
conditions

.

- For  instance
,

our familiar  example Is a string w/

length L that  is clamped ( held in place ) @ X=0

& × =L
.

In terms of bndy conditions that means :

YCO ,
t ) =  YCL ,

t ) = 0

Can  we  make  our separable Solti  satisfy these

boundary conditions ?



\
0

( i ) Flo ) = Ado) + Bsin#O) = 0

⇒ A  = 0

( ii ) F( L ) = 0 . COSCKL ) + B sin ( KL ) = 0

Two possibilities :

• 13=0 ,
but then A=O& 13=0 ⇒ Flx ) =o !

• sin ( KL ) = 0 ⇒ k= NI w/n= 1,43 ,
...

L

- So the general separable Sol 'n that  satisfies the

boundary conditions  4=0 @ X=O & X=L is :

Fhnglt ) =
!1! since )×(Ccos(nIVt ) + Dsinf "Ft ) )

And really ,
we Can

'

absorb
'

B into CE
.

D ( since

only the combos BC E
,

BD show
up

) so  a better

way
to  write this is :

Fhnglt ) = sinP¥)×[ Cn cost '¥t ) + Dnsinln "It ) ]
T IT

We  
may

want to  add

k= If ,

so  our
'

building cliff , building blocks to -

blocks '
are labelled by gether . So  we 'd

pwba
.

an  integer n=l
, 2,3 ,

. . . . bly have  diff . C E
,

D

for  each  n .

- Now  what about  initial conditions ? For example ,
we

Could specify the shape of the
string @ t=O

.

Maybe it has the plucked shape from  or  example

when we  were working on Farrier series .

*  0  *  L

ftp.#.PgaFhngco)=Cnsin(
n¥ )

-

-

y( × ,o )

Our  Up .  5011ns  all look like

sine  waves !



- All our  sep .  5011ns look like she waves
,

so  if  our

initial condition for the shape  of the string @ to

looks like anything else  We 're out  of luck
.

- At this point ,
we have to  ask

"

what  is the

most general Sol 'n we can build w/ these blocks ?
"

ylx ,t)= E. sin (n¥)×[Cncos(n¥t ) + Dnsin ( net ) ]
E T

Sol 'n t  n=l
, 2,3

,
...  so  add them  

up .

The
eqn

is linear
,

so this  is  still a  Sol 'n
. ANI

,

each  mode Is Zero @ ×= 0 E
,

X=L so their

sum  is  also Zero @ X = 0 E
,

X=L !

- Now  we have a lot  more flexibility when
imposing

our initial conditions ! Can  we find a Sol 'n  st the

shape  of the string @ t=O is some Flx ) ?

ylx ,o)=⇐,Cnsin(n¥ ) = Flx )←ssna°pTw9¥Eiot÷l,=o :)

-

WHAT  is  THE FOURIER SINE

SERIES OF FLX ) ?

- We know how to  do this ! Fourier 's trick
gives  us

the Cn !

Cn = E§dx Flx ) sin ( n¥ )

- But  what about the Dn ? If  we assume that  we

releasethe string from  rest @ to then

0=41×0) =⇐,sm(n¥)×[ cn.nfs.nl#fo)+Dn.nIr.cot*o) ]

⇒ 0 = ⇐ Dn .n÷vsmln¥ ) ⇒ 12=0



- More generally ,
if the string is

moving in the
y

- dir .

@ t=O then  we might  describe  its  velocity @ each

pt .  × by ilx ,o ) = V ( x )
.

Then :

ilx ,o ) =h¥
,

Dn .nl#.sin(ntI ) = V ( × )

⇒ Dn = E. he .§dxVl×)sin(n÷× )

- And thats it ! Starting from  our general separable

Sol 'n  we applied the B. C
.

E
,

then the initial

conditionsto find a unique Sol 'n
.

ylx ,t)=n⇐sinf¥)×[ Cncostfft )+Dnsint¥t ) ]
K Sum  of building blocks that

Cn = E§dx Flx ) sin ( NII ) satisfy 4=0 @ x=o,x=L .

\ Shape  of  string @ t=0

Dn = n÷✓§d× V ( × ) sin ( NII ) f
is Fla

. Velocity of  string

@ pt .  x @ t=0  is Vlx )

[
This is the general solln  of the wave

equation for a clamped string .

- Of course
, we 'd get a different solln  w/ different bndy

Conditions ! The pressure wave in a tube L like  in a

pipe organ ) satisfies the same eqn .

If the tube

is closed @ one end & open @ another the BC are :

PLO ,
t ) = 0 ⇒ A= 0 Oif kL=' 72,372,5 'tk

,
...

a
-

( Zn  + 1) it

p 'll
,

-4=0 ⇒ B . K . cos ( KL )=o ⇒ k= -

Z L

€
p

has  an  anti- node @ X =L



- But back to  our string example . Why did we use

a negative number ( - k2 ) for  our So .V . Constant ? Well
,

what  if  we 'd used a positive number ?

F "=+k2F ⇒ F=Aek×+Bik×
jftnkeowaarsedhegont

ij =+v4c2g⇒
g=

Cent + Detvt .

- This  is  a perfectly good
Sol 'n  of the wave eqn ,

it

just  isn't that  useful for  our clamped string problem !

Look what happens when  we try to enforce the 4=0

B. C
. @ x= 0

,
L :

FCO ) = Ae°+Be° = A+B = 0 ⇒ B = - A

↳ FLL ) = Aekl
- Ae

- ' al
= 0 ⇒ ekl= e-

kl

⇒ e2kl = 1

One Sol 'n  is 1<=0
,

but then 71×7=0 ! The only other

possibility is to  recall

ei0= Cost  +  i Sino ⇒ k=iK & ZKL = Znit  

⇒ K=nI

But then k=inI ⇒ k2= - M¥ !

- The lesson here  is that there may be more than

One family of separable Soltis
,

and we  need to

find the ones that are well - suited to the B.C .

and initial conditions for the problem  we 're trying
to solve !

- Let's look @ one more example of 5.0 . V . for  a PDE

w/ two  independent Variables :

←Tt
= xz

 d2u

oT×z
- Bu ,

NO ,t)=nLL,t)=O & ulx ,o)=Hx )

x ,B > 0 ! ! !



- First
,

let's look for  a separable Sol 'n Xlx ) Tlt ) :

XT =  x2TX
"

- PXT 7

DIVIDE By XT

it +
13

= x2I
'

µ
×

- As before
,

each side must equal the same

Constant
,

which we 'll Call
"

P
.

"

It Could be

positive
,

Zero
,

or  negative .

×2I
'

= P If +
13

=P

×

- We have to enforce ( or try to enforce ) the BC

Xl 07=0 & XCL ) = 0
,

so let's just focus on Xlx )

& the three possibilities P > 0
,

17=0
, & Pc 0 .

c-

Don 't had to  do this
,

but  writing P

in  a form that  makes  it  explicitly
( i ) P > 0 ⇒ P  

=  + 1<2
positive  can be helpful !

x2¥
'

= 1<2 → × "= EX ⇒ X(×)=Ae¥×+B[£×

lii ) 17=0 ⇒ x 2×5=0 ⇒ X
"

= 0 ⇒ Xlx ) = A  + BX

liii ) P < 0 ⇒ P = - 1<2

x2 ¥ = - K
'

⇒ x "= - ka÷X ⇒ Xkn = Acoslksx )

+ Bsinlkax )

- Now what happens in each case when  we check Xlo )=0

& Xll ) = 0 ?

( i ) P=+k2 XCO ) = A  +13=0 ⇒ B= - A

→ Xxi . Axle
'£×

. e-
*

) → xk )=A×le¥
. e-

'
¥ )⇒{ III }¥cxFE'E !



Iii ) 17=0 ⇒ Xlx ) = A  + Bx

XCO ) = A  +13/0=0 ⇒ A=O ⇒ Xlx ) = Bx

XLL ) = B. L =O ⇒ 13=0 ⇒ X(×) = 0 × ←
No hoots !

liii ) P= - K
'

→ Xlx ) = A coslkzx ) + B sin ( kzx )
Xlo ) = A. Cosco ) + B .  # ) = 0 ⇒ A=O

→ Xlx ) = B sin ( kzx )
13=0 ← Forces 41×7=0 ! No good

×( L ) = B sin ( kzl ) =° ⇒ { kzL=  it ,z#,3t ,
...

 ⇒ k=nIh f5¥
- So  depending on the

sign
of P there are 3

qualitativelydifferent possibilities for Xlx )
. But  only of

of them ( 17<0 ) seems to be Compatible w/ the B. C .

We Want to  impose
!

← Diff .  B. C. ? Diff .  Solms

of become  relevant !

←
n=o

hit gives
P= - k2 ⇒ Xlx ) = B sin ( Tx ) wlnek & n > 1 ×=o !

- Now  we Can solve the Tlt )
eqn

for this Case :

It + p = - new ⇒

i=
- ( p+nY÷n)t

- This
eqn

has just  one derivative
,

and
gives

 an

exponential :

Tlt ) = C e-
( B+n2¥t)t

- So the general separable solln consistent  with our

B. C
. @ ×=O & × =L ( the

"

NORMAL MODES
"

for the

problem ) are :

XIHTIT ) = B sin
#
× ) e-

43M¥
"

)t
he 2

,
n > 1

*t B in X & C in T
,

there's really

just  one  overall constant



- Now we need to  impose the initial condition

ulx
,

o ) = Flx ) .
Note that theres only one t - derivative

so  only 1  initial condition is needed
.

- First
,

can  we make the initial Condition  work  w/

just one normal mode ?

Xkntlo ) = Bs

,nfnE×)eYPt¥±'

to
Eth ,

-

Only if Flx ) happens to be a

sine wave wl period

¥
!

- For anything else
,

a single
normal mode won't

work , So we use our normal modes as building

blocks & look far a combination that  works
.

nhst ) = II. Bnsin#× ) e-
1 B+nYz# It

#
Add

up
 all permissible building

blocks .

We 'll determine the amount

Bn of  each one that  we  need !

ulx ,O ) = ⇐
,

Bnsin#x ) = Flx )

-

What  is the Fourier  sine

series  of Flx ) ?

ulxst ) = ¥
,

Bnsm

#

× ) e-
( 13+7*2 )t

w/Bn= Efgllx ' Flx ' )sin(n¥
'

)



F# OCS

- So far  we've seen two examples of 5.0 .V . for PDES

w/ two  independent variables :  × & t .

- For  one  eqn ( the wave eqn ) the Sep . solhs were

products  of trig functions
.

- In  our  other example the sep .
solhs were trigfunctions

of  × times exponentials of t .

- On the HW
you

'll solve an  equation  of the form

d2n

d×T
+

IN
= 0

← Laplace 's Eqn  in 2- D

dy2

and find that the
aep .

solhs are trig functions of

One variable times exponentials of the other .

- Other
eqns  include the 1- D heat / diffusion  eqn

day =  × d2_U ←

like last  example ,
without

dxz
the Bu term !

and the 1- D Schrodinger eqn  wl a potential that

depends on  X ( but  not t ) : Saw this  in

ihdff = - zt÷ day + ✓ , × , + , × ,

← Modern Physics !

- What  other possibilities are there  w/ two variables ?

- Two things come to  mind
.

First
,

we might  want to

solve Laplace 's
eqn  in

, say
, polar coords  or some

other OCS instead of  X E. Y .

Truce ,¢)= etodglpdane ) + e÷da¥.

= 0



- Separable Sol 'n ? ulp , 4) = Flg )g( ¢ )

o=
'

⇒ 6¥ )g + 5279240 .
7

DIVIDE  BY Fg ,

MULTIPLY  BY f2
o= ÷ Else ) + tsetse

. ~

- So we have a function  of
g plus a function of

¢ .

The only way
these can add to Zero  is if

they are equal to constants w/ the same  

magnitudebut  oppositesign .

- For reasons that  will become clear  in a moment
,

let's start  w/ the function
g

(4) .

There are 3

possibilities For the constant :

ligtg
"

=  +1<2 ⇒ g( 4) = A ek¢+ B e-
' 4

Iii ) tgg
"

= 0 ⇒

g
(d) = At B¢

l iii ) tgg
"

= - k2 ⇒

g
( 0 ) = A coslkcf ) + Bsinlkcf )

- Now
,

in our last example we used our B. C , to

decide which solhs were relevant , But  we haven't

given any explicit B. C
. here ! However

,
recall that

¢ is an angle measured CCW from the × - axis .

y
^

p
,

,•
←

Since ¢ is an angle , increasing

,

. it by ZF brings Us around to

i
" ini*

 ¢
> × the same

-

,
So  an IMPLICIT'

 '  -  - ftp.t - point -

Condition  an  an solh  is gl0/+2*7

=gc¢) !



"

SINGLE - VALUED "  c- like  any

- function !

- So how  do we insure gc 0/+2 't ) =

g 10 ) ? Look @

each Can .

( , ) Aek
'd +2 't )

+ Be
' KH 't 't )

= A  eked + Be
- k¢ f ¢ ?

→ A= 13=0 ( so

g=o
) or 1<=0 ( contradicts k2 > o )

( ii ) A + B. 10/+2 # ) = A  + B 4 F 4 ⇒ B = 0

→

g
( of ) = Constant

1 iii ) A cos ( k.CO/+Zit ) ) + B sin ( k.CO/+Zit))=Acoslko/)+Bsinlk4)

→ A=B=0lg=o ) E K E 2

- There are two possibilities here
. Either  our so .V .

Constant  is Zee ,
in which case gl¢ ) = Constant

,
or

the 5.  o .V ,  is - KZ
,

in which Case K  must be

an  integer and
g (4) = A coslkcf > + Bsinlkcf ) .

- So  what  are the
g

sdlns in these two Cases ?

C- since -
k2< 0

,

( i ) §Efg(gd¥g ) =  

+
1<2 w/ KEK & 1<71 not - k2=o !

4 Opp  
sign

From
geqn

!

↳ godglg ¥ ) =  

+
KZF  ⇒ g2d÷gtz + golf - k2F=0

You can solve this  via Method of Frobenius
,

but

it's more work than
necessary

! Any time
you

have

an eqn  where ( powers of g) - ( # of  derivatives ) is

the same in every term
, try gt as a Sol 'n !

Flg ) =g× ? ⇒ xlx . , ) g× + xp
'

- k2f£ = 0

→ ( x

2-4+4
- k2)g× = 0

⇒ x=±k



So the solln in this case  is

Flg ) = [ pk + Dp
- K

←

So the quantity
inside ( ... )

must

liiifsfglgdofj)=o → ¥y↳o¥)=o be a constant

→ go¥ =D→ doff = } ⇒ Flg ) = C + Deng

- Now  we know the single-valid separable sollns
,

the ones Consistent  w/ ulp , 0/+2 # ) = Ulf
,

0 )
.

Flg )g( ¢ )

=]
C + Dlnf ← of 0 ) a  constant

,
so labswb

'

into CE :D

( A cost .co/)+BsinLk0))(Cpk+Dfk ) KEZ

kzl

- Without  

imposing any
further B. C.

,

the general

single
- valued Sol 'n  is :

Ulp ,¢ ) = aotbolng + ¥z[ akgkcoskcf + bkfkcoskcf

+ Ckgksinkcf+  dkfksinkcf ]

As w/ our previous examples ,
there were other

separable 5011ns besides the ones included here

( like e±k¢ ) .

But they weren't Consistent  ufar

IMPLICIT Condition that the function should be
^

single
- valued since 0/+2 't E

,

¢ are supposed to

( be the same angle .

An  implicit condition  is something we often  don't bother to

state explicitly bk  it seems  obvious
,

but  it has important

Consequences for narrowing
down the 5011ns we consider .



- At this point ,
if  we had boundary conditions

we could impose them & try to narrow down

the Sol 'n
.

- But First
,

let's look @ another example of  an

implicit condition on our Sol 'n
.

- Our
g

Sol 'ns take the form gk , f-
K

,

'

and

In
f .

If  we're looking @ the whole × -

y

plane ,
then 0 Eg cos

.

- Why is this important ? Blc two  of  our

sollns - fk & lng
- behave badly @ p=O

!

And gk e; long are badly behaved @ p
→ as !

IF we want a solh that applies @ p=O or

g→a ,

we 'll need to  address this !

- For example , suppose I want to Find a solln  of

Laplace 's
eqn ( \72u=O ) on a disk  of  radius R

,

and I know that UCR
, ¢ ) is some known

function
- we 'll Call it 0-47 .

*
c-

Its
'

a disk ,
so  it makes

'

 
, ,•

sense to  use POIAR

Co0RDS*wl p=O ( the
origin ) @ the

' Mol
. - . . - . - g¥- .  - - - - - - →x Center of the disk .

R
: #!t\ Is up ,¢ ) a quantity that  we

|
think should be FINITE ? If

so
,

then bo - 0
, bk=0 , &dk=0

F K
,

bk bug 8
.

g-
 '  '

diverge @ f-
0 !



- So a finite Sol 'n  on the disk looks like

Ulp ,¢ ) = Ao + ,¥
,

gk (

Akcoslkcf

) +

Cksin

( KO ) )

We've dropped the bug & fk terms
,

so all

that's left are terms that remain finite

for  all OEFER ,

- Now we use what we know about WLR
,

¢ ) to

pin
down the Ak & Ck

ULR
, 4) = 040 ) =

ao+¥=
,

RK (

akcoslkoptcksinlkcf

) )

ao
= Holiday )

ak= ÷+fo2I¢ otopcoslkol )

" ⇒ . as " ↳ ,

}I÷¥EI¥II÷;
Us about the be -

C havin  of  nlp,  0 )

@ p= R .

- For example ,
if the B. C

.  was

ULR
, ¢ ) = 0-10/7 = 1  + cos 410 ) +  sin3( 4)

Then we Could evaluate the integrals ( or  use

multi -

angle
formulas like sin 34 = 3g Sino - ÷

,
sin 30 )

to  obtain :

Ulp ,¢ ) = Is + E ,gsm¢ + tzg2cosl2¢ ) - typ3sin( 30 )

+ tg p4 cos (40 ) .

- Likewise
,

if we wanted to solve The -- 0 on the

region Rep < oo
,

we 'd rule out the lnp & pk terms !



- The important point here is that 5.0 .V
.  in an

OCS besides Cartesian Coords
may

:

1) Lead to qualitatively different solhs !

g±k = ( xztyz )±
142

←

Diff
,

than 5.0 .V
,  sollns

←
of I÷Yz+d÷gi=o

Coslkcf ) = cos ( ktan
'
 '

( %) ) etc .

2) Require
"

implicit
"

Conditions that  restrict

the separable solhs you are interested in
,

Examples of this are the requirement that

g.lu/+2it)=glo/ )
,

or eliminating terms like

In
g & f-

K
if we're looking for a solh that

should be finite @ p=O ,

- Before
moving

on
,

lets look @ one more

examplein polar cords that highlights an

important
property of the LINEAR PDES we've been

Considering

- A boundary condition like yl 0
,

t ) =O or

u( R
, 4) = 0 is Called HOM0aINEOl= .

If two

5011ns both satisfy a homogeneous B. C , then

so does their sum -
thats why any

combination

of our Normal Modes for the Clamped string

gives
a Sol 'n of the wave eqn

that  still

satisfies the B. C
.  ylo ,

t ) = 0
.

- A B. C ,
like  YCO ,t ) =  4 is INHOMOGENEOUS

. If

Y ,( 0,4--4210,4=4 ,
the Sun Gy ,

+ Czyz =  4 ( citcz ) @
x=o ,



- Now
, suppose

I ask
you

to solve \72U=O on

the annulus Ru.

 

Ege Ro ( 0<12 .< Ro ) with the

inhomogeneous B. C , w( Ri ,0 ) =  
E. ( ¢ ) and

ULRO
, 0 ) =  %( of )

.

- You can either proceed directly
,

or you Can

solve 2 related problems & Combine them

Using Superposition :

(1) 1724=0 w/ U
,

( Ri
, 4) = Fi l ¢ ) & n

,lRo,¢
) = 0

(2) \72Uz=o wl Uzlk ;¢ ) = 0 E
,

Uzl Ro ,¢ ) = FLO )

- Since 172N = 0 is linear
,

U
,

+ Uz is also a Sol 'n
.

And the homogeneous B. C ,  on U
,

@ Ro & Uz @ Ri

means

ULRI ,¢)=U,( Ri ,0 ) + Uzlri ,¢ ) = OILO ) +0 =  E. ( 0 )

Ulro ,¢)=U,LRo ,
4) + Uzlro ,

4) = 0 +
 Fold ) =  

to ( ¢ )

- So We Can also
"

snap together
"

Soltis of simpler

problems to get sollns of more Complicated

problems .

- For  instance
,

let's
say Ri  = 1/2 & 120=1 ,

and

Filo ) = cos  ¢ E
,

told ) = sin ¢ ,

(1) Udp ,$ ) = aotbolngt Eg
,

[ akgkcoskcf + bkf
' '

cos k¢

+ Ckgksinkcftdkjksinkcf ]

nil "z,¢)= cos ¢

}Fo±#
aitztbitkt '= '

}
9=-43

U
,

(1) ¢ ) =0
Al .

1 + bi .

1 = 0 b
,

=  +213

Other  a ,b,c,d =O



→ uilp ,¢ ) = - Egg cos  of +

Egtg Cos ¢

(2)Udp
,$ ) = ao + bolng + PE

,

[ akgkcoskcf + bkfk cos KO

+ Ckgksinkcf +  dkjksinkcf ]

U ,( " 2,4 ) = O

u ,( , ,¢)=
} K¥ 4 't +  4. (E)

Io )
c ,=4↳

sm¢ G. 1 +  d
,

.

1 = 1
41=-113

Other  a ,b,c,d =0

→ Uzlp ,¢ ) = 45g sin ¢ -

tztgsmcf

- So the Sol 'n  of the full problem  - D2u=O on

112 Eg E 1 st  ultz ,0)=cos¢ E
,

ULI ,¢)=sin¢ - is :

Up ,
0/7=1 - Es + F) cost + ( tsp -

stg )sm¢

T
No  Constant , lng ,

or g±k w/ 1<72 terms

bk  no  Const .  or  coslkop
,

sin ( k¢ ) terms  needed

for B.  C. !

The function  n  is

equal
10 Cos  ¢ on

the inner boundary &

Sino an the  outer

bndy , It satisfies

\72u=o F  

tzcg El

& 0<-4 < Zit ,



- Superposition  Is useful when you Can break  down

a problem  w/ N inhomogeneous B. C
,  into

,
say

,

N familiar problems  4 just
1  inhom . B. C.

- For  instance
,

what  is the steady - state

temperature
in a square plate ( sides  of length L )

w/ TCO
, y ) = T

, ,
TCX ,o ) = Tz

,

and Tlx
,

L ) = TLL ,y)=O ?

IEEII.to#tIII.tiiEjI
.

KTZ

FIX WHEN 3=2

- So what are the other possibilities for PDES

w/ 2 Variables ?

- One that Comes up quite a lot  Is when
you

med 3 or  more variables to describe a

physical
system ,

but  

you are only interested in

solhs that depend on 2 of the variables .

- Why would that be the case ? Consider the

"

2- D
" diffusion ( or heat ) equation :

EE + nlEi÷+Ei÷)=o



- This eqn governs
the diffusion of some quantity

( the Concentration  of  a chemical
, say ) over time

throughout a
region

 described by the Cartesian

coords X & Y .

- Suppose I have a Very long strip  w/ width W
.

By
"

very long
" I mean that  it 's length is  so

much bigger than W that for our
purposes

it

may as well be infinite ,

gy=L
×=0

- .  - -

Y ⇒ ×→•⇒

p

- -
- -

y=o

- Now lets
say we keep the concentration  of

the Chemical fixed @ X=o
,

so u( 0 ,y ,
t ) is

always equal to a Constant value that we 'll

Call no . And we 'll
say

the concentration along

the sides 14=0 & y=L ) Is always Zero .


