
III
MEE CURVILINEAR ORTHOGONAL COORDINATE SYSTEMS

- We will start w/ something you've seen before : Coordinates . You're used to

describing Where things are in terms of X
, y ,

and -2 . These are called

CARTESIANCOORDS
.

And you've probably also seen some Other examples like

SPHERICALPOLARorCYLIRKA.PL#RC0ORDI- But before we get  into different kinds of coordinates
,

let's take a few minutes to

to review what coordinates are supposedto-do, and what they meat .

f
In space ,

Z plane ,
etc

^
- COORDINATES are a way of describing a point .

To be used
,

this description has to be

uniqueand unambiguous .¥¥zy -

MAITA
this ! For instance

,
two planes

.
.

. intersect along a line
,

and three planes intersect
<

,

×
'  '

y
'

.

.

, j Y at a point . So a description like X=1m
,

Y=1m ,
and z=1m identifies a pt . by telling

you about the intersection of three planes :

- They - z plane with

X=1- The X - z plane 4=1
- The X -

y plane Z=1

- This probably seems a little complicated for something as

simple as X
, y ,

Z . The idea is that coordinates give every point
an ADDIEthat  you know how to interpret .

- So coordinates are a way of assigning a unique set of numbers

( the address ) to every point .

If I tell you about some great new

way of describing where things are
,

but I don't meet these

requirements( a unit address for event point ) then I don't have

a good Coordinate System !

- Once I know how to describe where points are
, I can do things

like tell you about the location of something ( a baseball , say ) at

different times .

I 'd do that by giving you 3 functions of t - one for

each number in the address . If I were using
Cartesian words this

would be Xlt )
, ylt )

,
and Zlt ) .
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- But Cartesian cords aren't always the most useful ! For example ,

if I was

describing the motion of a satellite around the Earth
,

I might want to

use its altitude
,

latitude
,

and longitude . Why ? Because I expect some

of those quantities might stay constant throughout  its orbit
,

while all 3

of X , y ,
z would change .

- Depending on the problem ,
some coordinates are better - suited to what  you

are trying to do !

← Now
,

in both those examples ,
each word .  is independent of the other

two
.

That is
, moving in the X - air doesn't change the y or Z Coard .

Likewise
, you can Imagine increasing an object's

altitude without changing
its latitude or longitude . At any point there are 3 directions you can go

in
, and they are all

"

perpendicular ,

"

- Mathematically ,
we slate this by writing down 3 unit vectors for each

direction
.

We Uae the dot product to cheek whether they are 1-
.

In Cart , Coords we 'll call them I
, y ,

E :

£

µ I.  I =\ ix.  y = 0 I . E= 0
•

iffy f. ii. o y .y=l g. E - 0#_ z.y.o.gg . z ,

;zy[
penang . , un . µ .

c
: have magnitude L length )

x

"
 '  '  -

.
.

,

:p

Y
= 1 !

- In other card systems they 'll have diff , names
,

but there 'll always

be 3 of them C or 2 in a plane ) bk  you med to describe 3 possible
directions

- So imagine I describe some cord . system to you ,
and let's call the 3

unit reelers E.
,

Ez
,

and £3 .

If all 3 are perpmdicular :

£i ' Ej  = {
1 if  i=j

0 if  itj

Then we have an ORTHOGONAL COORDINATE SYSTEM
.

( Orthogonal
is just another word for perpendicular . ) I CARTESIAN

,
SPC

,
and

CYLINDRICAL POLAR COORDS

are all OCS .
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- As I said before

,
some card . systems are more useful than others

,

depending on the problem or application .
So knowing how to

translatebetween different cord . systems is essential .

- Most of the cards we use in physics are OCS
, so we're going to

learn how to translate statements about vectors & coords from

one OCS into another !

TEE DISTANCES
,

SCALE FACTORS
,

AND DISPLACEMENTS

- Let's start simple , working in just a plane .

You're used to X - y
coords .

But  you've also seen POLAR Coords :

Y A

×= . ,
,  -1=0.5 ¥

•
←

×⇒
, -1=1

- Pt . A  is located @ ×=1
, y =L

. Or
,

r

'

you could also say it is FL from the

µ
.

↳ ••-

, poor
's

- Origin , @ an angle of 174 ( CCW ) from
B - ri.i.ie?EE#M5IY + nex . axis

.

; X - Pt . B is 1.12 from the origin ,
and

÷
the angle is 2.68 ( radians ! )

- We can describe every pt ,  in the plane by specifying its distance from

the origin ,
and an angle CCW from the X - axis

. ( The choice of x - axis

for the angle is arbitrary .

We

coulduse
any other line

,
but we will

always use the x. axis so there's no ambiguity ! )

- And we can relate the two descriptions of a point using a little

trig :

A
We 'll use g for distance

y

a
←

^ /
i X = f cos ¢ from the origin ,

and ¢
/

'

f / i y = g sin ¢ for the angle .

/ 1

/
'

| rtyo"

; IMPORTANT : X. y and f. ¢ are two
/ ,

=T>×
equivalent descriptions of point A .

- Now
,

when we change from one card . system to another , the way
we describe a particular point will change .
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- But the points themselves don't change ! So things like the

distance

blt two points ,
or the arrow you draw to point from one to the

other
,

those things de not change . We're
going

to make use of this to

help us figure out how to translate various quantities blt two OCS
.

Y

¥

A•
You draw the same arrow blt A & B

,

••.

. µ•fi%and it has the same length ,
whether

B -

.
,

, you Ual Cartesian or Polar coords
.i.ii.ii.it#.

; x

- We 'll start by considering two pts in the plane that are very close to each

other . One has Cart , words ( × , ,y ,
) E

,

the other is ( Xz
, yz ) .

4{¥µ;yjg×
-

tteonwsyhwratpnarut,

are then ? the Pythagorean + nm
.

( As )2 = ( DX )2 + ( Dy )2

- Now imagine that they are very close together - so close that DX E. Dy

essentially become the infinitesimal dx & dy you 're familiar with

from Cak
. Then :

ds2=d×2+dy2

- What if we want to express this in poly cooed ? The dx blt the

two pts could be due to cliff . Values of p ,
or of ¢ ,

or both :

× =p cos ¢ ⇒ dx = ¥ dp + God¢ ⇒ dx = cost dp - psin¢d¢

-

Total der , of a function ( x )

of two variables 1 p & 4 )
From multi - variable calc .

- Likewise for dy :

y =p sin ¢ ⇒ dy = ¥ dp +0¥dot = Sino dp + pcos¢d¢
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- Since we know how dx& dy relate to dp &d¢ , & we know how to express

the distance blt the points in terms of dxeidy :

ds2= ( coscfdp - psin¢d¢ )
'

+ ( Sino dp + pcos¢d¢)2
= (

ostdtsint
)dp2 + f

Findhorn
d) dpdof

+ ( p2sin2¢+p2cos2¢)d¢2

ds2=

dp2
+ p2d¢2

- So
,

now we know how to translate our expression for the

distanceblt two infinitesimally separated points into polar words :

dX2+dy2 = dp2 + p2d¢2
^ Two things to notice :

,••pSd¢
1) No dpdcf term in ds ?

, ,

|aoki→was " Eott's

¥59
'

it'I¥FTIsYk,
,

- d¢ is just a change in the=
polar angle . The distance is pd¢!

- Now suppose I tell you about 2 new coords that I 'll

call q ,
& qz .

If this is an OCS then ds2 will have a

dq ,

2 term and a dqih term
,

but he dq , dqz term .

- Heres an example : Coords n
,

✓ related to X & y by

X = tz ( n2 - ✓ 2) y = UV ~
'

PARABOLIC
COORDINATES

1

↳ dx = udu - ✓ d✓ dy = du ✓ + udv

↳ d×2+dy2= ( ndu - Vdv )2 + ( ✓ dutudv )2
= 1 u2 + v 2) due +(-2*40) dudv

+ ( Ntv 2) dvz

⇒ ds2= 1 u2+v2 ) ( du2tdv2 )
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- Like Cartesian E. Polar

,
these cords have due & dv2 showing

up in ds2
,

but not dudv .

- In other words
,

n & ✓ are perpendicular , just like × E. y or p& ¢ .

- But notice that the Coefficients of due & dv2 look verydifferent
than the coeff  of d×2E

, dy
2

, or dp2&d¢ ?

- We call the F. of these coefficients
'

SCALE FACTORS
.

'

- So if our coords
. are q ,

& qz , & the scale factors are h
,

& hz ,
then

=-
Note that the

|
2 2

ssgqayefaagkrs
are

ds2= h
,
19

, ,qz ) dqp + hzlq , ,9z ) dqz . nds ? see_| tbew'

[
The scale factors can be Constants

,

or functions of one of the coords
,

or functions of both !

- For our previous examples :

CARTESIAN : {
h× = 1

Sometimes we use numerals

hy = 1 1,2 to denote which coord
;

= sometimes we use the name of

POLAR ; {
he = 1

the Card ( '

x
'

any
'

,
etc )

.

h¢= g
/

PARABOLIC : {
hn = JR

hv = Th

- The POLAR coat example already shows Us what the scale

factors mean If we move blt two pts separated by angle⇐in the ¢ - direction
,

the corresponding distance Is

gd¢ ,
not dot

- Likewise
,

in PARABOLIC cards
,

if two pts have the same

V coord . but their u coords differ by du
,

the distance

blt them is du ¥2 .
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- So the scale factors show Us how actual distance are related

to the way the coordinates change when we move in various

lirections .

- What can we do with this ? Well
,

for starters
,

we can say

something about the distances associated w/ moving in various

directions
,

so we can write out the displacement veckr blt

two infinitesimally nearby points :

←
our notation f Djstjrrnored

in

Ya
...

unit rector

> •
DI = dx I + dy y ← that  indicates

µ y y
y - dir .

€,¥"i× EstimatedIEEE.¥tFes
gp

-
d ' ' '

g
¢ . dir ,

÷KEEFE
"

de

;¥i+e±oT How far  you more

• How far  you move
due to a smallµ×

dcuneantoeamsma
" III.negotiate

- More generally ,
if  You have an OCS 9 , , 92 w/ scale factors

h
, & hz

,
then DI is :

a-
Remember

,
the scale

Factors can be

and
I = h

, dq
,

§,
+hzdqzofzstarts or functions

.
It

- depends on the Card .

Distance blt two system .

pts . Sep . by d9
,

in the 9,
direction .

- Wait
,

we 're familiar w/ K & y ,
but what about f & to ? And

what do 9,
E

.

92 mean ?

- Short answer : 9
,

is the direction you go in if  you increase

9 ,
.

SO f is radially outward ; ¢ is CCW
.

We 'll discuss this

in more detail in a moment !
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- Besides helping Us understand how to express the infinitesimal

displacement DI in different OCS
,

the scale factors also

help us sort out area and volume elements for integrals .

- Consider CYLINDRICAL POLAR COORDINATES
. They 're just

polar words
, along w/ Z :

de When Z  is constant ,

little patches of areaEx# Pd¢ haya
 =pd¢dp(' '

'

'

'

'

'

'

i.EE#-dl;.+.wnensisconstant
,#|.nl#//dtdA=pdddz÷

, , and when ¢ is
×

Y#
a CMIYIIIIIA

.

The volume element

in CPC is :

dV= pdcfdpdz

- The CIA 's are little rectangles ,
and the DV is a little

rectangular prism .
The scale factor

'

g
'

shows up in the

length of the side associated wl changing ¢ .

- If we have an OCS 9 , , 92,93 w/ scale factors h
, , hz ,

and hz ,
then the area & volume elements are :

,

( const . 93 ) dV=h
, hzhzdq ,d9zd93

dA={ hhhhddhhfhsccanst.az)

XTbaa ,

hzhz d9zd9z ( const . 9 , ) T.fi#..).hzd9zh,d9

,
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- This might look complicated ,

but think about what we're

doing : it's just some statements about three possible lengths,

One for each of the three ways you could change one of

the coordinates
.

dl
,

= h
, dq

,
c-

lf  You're on a surface where

9 ,
is constant ( like p= canst .

dlz = hzdqz on the wall of a cylinder ,

dlz = hzdqz
or r= Const . on surface of a

sphere ) then the two remaining

ways you can more have lengths

hzdqz & hzdqz ; those are the

sides of an infinitesimal rectangle

w/ area d A  = hzhzdqzdqs ,
etc

.

B- OCS AND BASIS VECTORS

- When we were talking about DI
,

we said something like

iq ,

is the direction you go in when you increase 9 ,
.

1 So I

is the dir . you more in when you increase X
, f is moving

out

Ward from the origin in the plane ( or the z - axis in 3- D)
,

ek .

- But  is that useful ? What if I told you about a vector

II by describing it 's Components in Cartesian Coords :

E= Axil + Ayy + AZE
- Could you then give me a description of the vector

in some other OCS ? 7

-
Axk + Ayy + Aziz = App + A¢§ + AZE

- No
;

we need some way of Converting Cart . basis

vectors into CPC ( or other OCS ) basis vectors .
How do

we do that ?

- First
,

let's try to visualize f & of .
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- We know that f moves radially outward from the origin , &

TO moves CCW .

^ - Notice that I & y point
it in the same dir

everywhereµ¥75
That is , I looks the same @

\ > every pt ,
same for y^ .F•-y>

8

€ p - Not so for p & of ! They meat

> the same thing everywhere ,

fit but they took different .

•  → ×
'

- Note
, though ,

that they are

still unit vectors ,
and they are

still 1- to each other :

µ
f. f = 1 ¢ . 4=1 p. of = 0

Note that I'm talking about p & of @

a specific pt . I'm not Comparing f at

one pt .
to f @ another pt

,
etc .

- Okay ,
so it looks like I & ry are constant , while f & if '

look '

different @ different points .
How can I relate them ?

That is
,

how do I convert from K
, I to f , to & vice - versa ?

- Consider a pt . w/ Cart
. Coords x. y .

The position vector For

that point is

F=xE + YI
- And we know how to write x&y in terms of p&¢ :

F =p cost I + psinofy
- Now

,
if we change p a little bit

,
we know that moves

Us to a nearby pt . separated from the 1st point by
dpf , right ? So let's look @ the derivative of F

with respect to p .
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F =p cost i + psindy → 5¥ = ffplpcosoli) + ddglpsindy)

¥ ( pcosoli ) = cosdxr + pofekos 4) I + pcos¢d¥p
- .

= 0
,

blc Jd¢/dp=0 = 0 bk

I is constant
.

Nl
.

-

↳ at least D= cost 4
.any.

-

¥p( psinoly ) = Sindy |

,

÷
x.#

- So if we change p by dp ,
the position vector changes by :

dF=(cos ¢ rx + Sindy ) dp

- The part in Front of dp must be what we mean by f !

↳ f = cos ¢ x. + Sindy
'

[ Check : f. f =L
,

as we expect for a unit vedw ?

f. f = coszcfiyii't2 cost and#
'Fsmzcfyyyi

'

= cos 2/0 + sin 24 = 1 ✓

- Let's try this wl 4 E. 4 !

#
l¢

= - psin¢× + pas¢y
←

As before
, If =o

,

and da¥=E¥a=o.

↳ di = pl - sin ¢ I + cost in d¢

- Is To the part in front of d¢ ? Not quite ;
check it 's length,

( - psincfktpcosdy ) . ( - psincfx + pcoscty) = p2( sin 20 + cos 24 ) =p
2
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- So to get ¢ we need to divide the stuff in front of d¢
by its magnitude if =p :

~←
We divided by K¥01

,
which

is the scale factor h¢=g .

§ = - sin¢x + cos ¢ y^ Is it clear why ?

- And now we know how to convert blt Cart . directions &

polar directions !

Can you invert this

§ = gig E¥ = cos ¢k + Sindy ←
& write I & y as

/ Combinations of f & § ?

¢ =

¥rT,
Efg = - and I + cosdyn

- Now
,

we said that POLAR cards are an OCS
,

and that was

supposed to mean that the unit vectors are perpindicular .
Is

that the case ?

f. to = ( cost I + Sindy ) . ( - sinoxtcosdy ) = - cos¢sin¢ + sn¢cos¢=£

- For any other OCS
,

we 'd do the same thing . First
,

write × & y in terms of q ,
& 92 , & then :

^ I df
~

Remember
,

i is just a

Ci =

|g÷fT|
Eltf÷

.

= - - label ( or
'

index ' ) that

hi d9i we use to indicate which

Coord . we're talking about .

[
Dividing by the magnitude insures

that we get a unit vedw
,

as we

saw in the $ example ,

- Let's do one more detailed example to make sure this

is all Clear . We 'll work out the unit vectors for the PARABOLIC

cords from earlier
.
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- We defined PARABOLIC cords as

×= £ ( win ) y= uv

Thisreplaces the usual Cartesian grid wl a
'

grid
'

made

out of a bunch of parabolas .
Parabolic words show up

sometimes in orbital mechanics .

- Before we work out the unit vectors
,

let's take a moment to

think about what these coordinates look like . What sort

of grid do they make ?

- First , you need to know that we always assume that

one of the parabolic Coords is not . negative .
We 'll

always use non - negative u : OEu< as
. Then - a< ✓ < as

.

- ( Why ? Otherwise pairs like U=4 , V =3 and u= -4
,

V =-3 would

refer to the same ×
, y point ! Coords should

give every pt .

a unique address . Here we deal w/ that by assuming u

is never negative .
That's not the only way to do it

,
but

there's no med to dive into that  right now . )

- So how do we visualize Parabolic Coords ? We think of

Cartesian coords as a grid bk X =3 is a vertical line
,

and

y= -2 is a horizontal line
,

etc . So what do we get when

we set u= 3 or ✓ = - 2 ?

- Well
,

what pts in the plane Correspond to a Constant

Value of V ?
~

Use 't ' bk we

×= Eu
'

- In → u2=✓2+z× ⇒ u=;÷j✓-×
decided a 30 !

y= uv = ✓ JI ^
't

✓ =\
✓ > 0 up

here
↳ y=vTx=t2 €fV=0 . ... ...  . . .

The top ( ✓ > o ) ✓ < 0

or bottom ( ✓ < 0 )
✓ = - 1

down here

half of a horizontal

parabola ,



1147

- Likewise
,

what points in the plane correspond to a constant

Value of U ?
=

✓ can be

either pos .

× = tzu2 . tz ✓
2

→ ✓ I u2 - 2× ⇒ ✓ = :#ya Eng

y=uv=±uJ # xy

N =/↳ y=±uJFzx
)-

n=O

n 30 , but since we
- > ×

have ± we get both

halves of the parabola .

#
- So now we can visualize the Parabolic coordinates grid

by plotting several of these parabolas corresponding to

cliff , Values of u & ✓
.

V=4u=3
✓ "

3u=4
U=2 ✓ =2

u=l ✓ =L
w=1

,
✓ =3

gives X= -4
, -

•

4=3
U=  0

7
✓ = 0

a
U=4

,
✓ = -2

7 ✓ = - , gives X= 6
,

Notice that the / y= - 8

parabolas always
→

^

••
I→

intersect @

right#. ✓ = -2

V = -4 V =-3

- Back to our Calculation ! We already worked out the scale faders :

dx=udu - ✓ d✓

} ⇒ ds '
= ( u2+v2 ) ( du2+dv2 )

dy = ✓ du + udv

⇒ hu = h✓ = TE
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- Now let's write out the position vector
, w/ × E. y in terms of

UE
.

V
,

and find the unit vectors
.

F = xxriyy = tzlu
'

- ✓ 2) I + uvy

de ✓

a
= in + ✓ f IEFUI = JI = hu

,
t'

tdx DI I know I 'm
du du

~
supposed to get

⇒ £ =

I huo.hr here ; this

JI
£ + j¥✓ Y

is a nice check

of my work .

DI DYfd✓ Iv
f

II = Ii+tuyKEI -VIEW
⇒ J = - £45 + j÷fY

As a final cmoki
I confirm that in

✓ & f are orthogonalin .
i = -

w-
+ I = 0

←
-

'

W2t✓2 W2t ✓ 2

- So PARABOLIC Coords are Indeed an OCS .

We can draw in

& i @ a few pts .

U=1
,

✓ =3 :

in = iron + roty ,
i = - tfoxtioy

in

i ^T•/ u=  4
,

✓ = -2

in = ¥i - try ,
i = tax + try

←
in always pts  in the direction of  increasing U

,

yii
and i in the dir , of  increasing I

.

Notice

that
,

even though the × & y components•\s£
of a e; j change , they always have

the same relative orientation .
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- As a check
,

what if I proposed some new coords related

to Cartesian coords by

× = £ I a

2+132

) y = xp

- They look pretty similar to PARABOLIC cards
.

But are

they an OCS ? Do you med to derive the unit vectors

to check ? Nd . Give me one simple reason why this

is not an OCS
.

( Ht : Look @ ds ? ) Now
, give me an

even simpler reason why its not even a good card . system !

B- TRANSLATING A VECTOR FROM CARTESIAN To AN OCS

- We started the last section by asking how
, given the x ,y,z

Components of a vector
,

we would go about describing it

in some other OCS :

It = Ax I + Ayy + AZE = A
, E,

+ Aziz + A3E3
-

-
Given those . . .

What are A
, ,Az , As ?

- And now we 're equipped to answer it !

- First
,

how do we determine the components of a vector ?

The A
, component of # is

' how much
' of # is in the E

,

direction
,

and likewise for Az & As .

We determine that

with the dotproduct of E E
.

each unit vector

- Recall :

HE← E. B = tallestcost
'¥E?Bb

't

-

So  if B is a unit vector
,

this gives the fraction of

IAT in the dir . along B
.

⇒ A
,

= II. e
, Az= It Ee A3=E .es
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- Once we know how to express the Eu. in terms of I
, y ,

I
,

We can evaluate those dot products .

- Let's look @ our POLAR coords example . There
,

we found :

f= cos 4k +Sindy ¢ = - sinofx + cos 4 I

- So if I gave you the Cart . components Ax & Ay of some

vector
,

then :

Ap = f. It = ( cos ¢ I + Sindy ) . ( thx + Ayy )
= Ax cos ¢ + Ay sin ¢

A¢= of . A' = fsinox + coscty ) . ( Axnx + Ayy )

= - A×sin¢ + Ay Cos ¢

⇒ It = ( Axcoscf + Aysino ) f + ( - Axsinol + Ay cos 4) $

4 9
The Cart , Comp . A×& Ay may just

be numbers
,

or they Could be some

functions of × & y ,
in which Case you

might want to re - write them using

X =p cos ¢ & y =p sin ¢ !

- As an example ,
consider the vector At = 4 I + 7  y :

↳ I = 14 cos ¢ + 7 sin ¢ ) of + ( -4 sin ¢ +7 cos ¢ ) ¢

a +
Notice that the Ap & A- of components

Change when ¢ changes .
What ? Isn't  it

a constant vector ? YEI .

Remember that

f & to change ,
too !
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- A more interesting example is the POSMON VECTOR
.

How do

we write F in polar Cords ?

←
Let's do 3- D CYLINDRICAL

F = X I + y y^ + z £ POLAR COORS
.

rp = f. F = ( cosotx + Sindy ) . ( xktyy + ZE )
= x cost +  ysm¢ } x =p cos ¢

= pcosyo + p sin2¢ y =p sm¢

=p

r¢ = § . F = ( - sin ¢ I + coscty ) . ( xxrtyytzz )

= - × sin ¢ + y cos ¢
= -

p cos ¢ sin ¢ + psm¢cos¢
z

a

= 0

•

% = ÷ ÷ = £ µ:P⇒ F = pf + ZE #¥E
I

' -Yd
.

>
x

pf .

IMPORTANT : F does not have

¥
a ¢ component . Why is this ?

- We can work out the components of any vector in any OCS

this way ; we just need to work out the relationships blt

the basis vectors in the two Coord . systems .
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MEE VELOCITY
,

ACCELERATION
,

AND KEEPING TRACK OF

CHANGING UNIT VECTORS

- One of the nice things about Cartesian words is that I
, I , & I

are constant
;

that Is
,

@ any pts ( X
, , y , ,

-2
,
) & ( X

. ,yz,zz ) they look

exactly the same .

- Another way of stating this idea
,

that the Cart . basis

vectors don't change from pt . to pt .

,
is to say that their

derivatives are Zero ( like any constant ! )

9¥ = 9¥
,

= adzI = 0
,

& similar for y & E

- But this isn't true far the other OCS we've seen
;

vectors

like f & To seem to change direction ( but not length - they 're

always unit vectors ) from pt . to pt .

- ( Note : There's a bit of a subtle point here .
A unit vector

like f or $ meat the same thing @ every pt ; f means

'

radially away from the origin no matter where you are , So

in that sense all OCS basis vectors are
' constant .

' Here
,

when we say a vector changes from pt ,
to pt . we mean that

the arrows you draw @ each pt . look different . But you
don't med to worry about this distinction in this class ! )

- As an example ,
consider the vector f @ two pts . w/ the

same y - Coord . but diff . X - Coovds :

t±h⇐±EiftBEIa¥¥÷E±I¥¥:
different .

^( If a quantity changes as we change × ,

that

means
:

df -40
dx
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- Well
, we know how to write f in terms of the constant

unit vectors k & y , so let's check this :

p = co ;g¢I + sinly = jx¥× + jx¥pY
÷=¥a .

' '

±e=¥a
j¥o

↳ ¥
,

=L ; . EE,
title - eh # Ii

I¥yi2×= §
T

= It - E) i + t ¥ ) y

= It . eyed )x - eighty
= sing xr - costly = sing ( sincfx - coscf y )

Makes sense ! On last page

⇒ 9¥ = signed ( Sino I - cos¢y )
←

saw that for 0<-0/4 ,

increasing × made f
longer in x - dir . & shorter

in 4 . dir
,

- Another example Is how f & to change as we more CCW

around the origin :

dip *

d-¢
= - sin ¢ I + coscty = § 2

IF" cousin , = . , * ,

!!Iiy¥¥¥e

Do these = describe change
in f & ¢ blt pts .

1 E
.

2 ?
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- Note

,
however

,
that f & if don't change when we move

in the f direction - radially inward or outward :

ftp.ofelcoso/x)+ddglsindy) = 0

'

¥e=¥etsm¢⇒¥↳¢ , ,=o

f¥.L,¥i¥e÷§aoE¥tt

- Why do we care about this ? First
,

blc these vectors

may show up in integrals ,
where we have to remember

that they change from pt . to pt .

?

#
← Assuming ¢ is Constant gives the wrong

answer ! What would this answer even mean ?Edit

=fg÷ytsMoE.no?oiIF?kosoxtsinoliHo
= ( -1 - in )^x + ( o_O )j

= - ZI ✓

- The same goes
for derivatives ,

and this will be especially
relevant in your THEORETICAL MECHANk= Course !

- As We said on the First day ,
one reason to use a Card .

system is so you can tell me about the motion of some

object .
IN Cart

. words you could do this by giving me

three functions that specify where It Is @ different

times : xlt )
, ylt )

,
and zlt ) .

Then its position is :

•

En
' l l

) /

Flt ) = xltsx + yttly + ZLHI

µ÷t.tt
,
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- For Instance , a particle that Is moving a
in a circle in the

X - y plane , completing its rotation with period T ( so

frequencyF= 11T ) has position : In  x. y plane
I

Flt ) = Rcos ( wt + 8) I + Rsin ( wt + 8) + 0 E

T T t
'

Angular frequency '

'

Phase ' controls where

Radius it is @ t= Os
.

If 5=0

W= ZITF  = YI it starts @ xlo ) = R &

YLO ) = 0
; if 8 =

' th it

starts @ Xlo )=O
, y( 07=12

,
ek .

- Now
,

once you know the position as a function of time
,

you can also tell me the object 's velocity & acceleration .

←
NOTICE : Since I

, y ,
&

Jlt )=ddIe = date 'x + Etty + E¥LE E are constant ,
we

don't worry about

EH±EFe=da¥x
'

+ duty +

adf.EE#.EE.EE=o
!

- For our particle moving in a circle we 'd get

Jlt ) =
- Rw sin ( wt + 8) I + Rwcoslwt + 8) + OE

IJI = irtwsnu .FR#4wt+oT=Rw

Felt ) = - RWZ cos ( wt + 8) K - Rwzsin ( wt + 8) + OI

- This all makes sense ,
but Cart . Coords seem like

a clumsy way to describe something moving in a circle .

Why not use POLAR words
,

which have circles ( p = constant )

built in ? Using X=pcos¢ & y=psin0 , get

Flt ) = Rf + OE f = coslwt + 8) I + sin ( wt + 8) I
. -

tp=R ¢ ← 4=8 @ t=o
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- Now here's where we have to be careful ! Just looking @ F
,

We see g= R .
The info about its motion - the fact that ¢

is changing - is hidden in f .

- In other words
, f depends on ¢ & ¢ = wt + 8

,
so f depends

on t as well
. When we calculate

TE.ci#wv=dE=oftlRe)=Rddf=Rdadtffj-gaufTamnaTearlier

-

→ J = Rw ¢
CHAIN RULE !

IJI = Rw - f
I

E =g¥ = Rwodfnf = Rwda¥dEtg=Rw2l . f )

→ I = - Rw2§

- Once we remembered that the Polar unit vectors change
from pt . to pt .

,
the calc

. really was much easier to carry
out than it was in CARTESIAN .

The right coord systemalwaysmakes things easier !

- This was a simple example . What about more

complicatedmotion ? Suppose we are working in CPC & an

object 'ss ,
0

, & z are AI Changing over time
.

Flt ) = pH ) #+ zlt ) E

t
cos (0/14) I + sin (0/1-4) I

- To work out J E
.

I
, we just need to remember that f

depends on ¢ ,
and ¢ depends on

÷J=E¥= date + edcft + o¥eE+zda¥
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J = daff + P¥t + DIE E
Does this make sense ?

= ddtt f + pdoffdafq + off I
If P changes by dp ,

thats a

dist . dp in f dir
,

so Vp= dlldt .

= 0¥ ftp.d# ¢ + g¥tz
If ¢ changes by d¢ ,

distance

/
is p d¢ ,

so ✓
¢ = pdohdt .

And Vz is the same as

↳ J = adtp + pE¥¢ + date I
Cartesian

,
of course

- This is probably a good time to introduce you ( if you haven't

already seen it ) to the ' dot ' notation for time derivatives :

Ita = date t=da¥
'

I =da¥s ,
en

- So in CPC
,

the velocity is :

J =F= if + pilot + EE

- Likewise
,

for the acceleration
,

we have :

E = E - ffipe + i¢¢ + pjooj + pig + EE + EEf°

-This is just the
Same here

product  rule written  in

dot  notation ! of
ft -

= Ff + to data + p¢¢+p¢§ + p¢¢d§f +

'

EE

in w

¢ I

= ( f - pop )f + ( Zito + p '¢ ) to + E E

I = ( f - poiyp + ( 2pi¢+p$)0 + EE
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- To summarize , our expressions for position , velocity ,
and

Acceleration in CYLINDRICAL POLAR COORDINATES are :

F = pf + zzn ← Remember : No ¢
Component ! Info about

J = ff + pojoj + jz
¢ is in f !

E = ( f - pop )f + ( 2e¢+p¢
'

) of + EE

- Things work the same way in any other OCS w/ coordinates

q ; & basis vectors Ei .
We just need to know a few

things :

(1) How to write the pos .
F in terms of

the q ,
& Ei . Be careful ! This may riot

be as simple as 9
,

E
,

+ qzoiz + 9323 - look

@ CPC where there is no ¢§ term !

(2) How to express the basis vectors Eu. as

functions of the coordinates q , & the Cartesian

basis vectors I , I ,
E .

- As an exercise
, see if you can work out J & E for the

PARABOLIC CYLINDRICAL COORDS we looked At :

( x ,y ,
z ) → ( tzlutvl )

,
u✓

,
z )
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PARABOLIC COORDS EXAMPLE

X= Elm
'

. ✓ 2) d×=udu - vdv

y= WV dy = ✓ dutudv

dI= ( uxntvy )dn+tvx+uy)dv
have h=j #

} # =dnV¥ir + drier

&
Caithembotnin ,:*

in = nifty it Tying

huirnrxtvy hvi=-vx+uy
F= xityy = ?

whir = uixtuvy vki = - vhituvy

i. flu 'vyth( win . ✓ i ) ↳ ( whir - vhi )=lu2tv2)I

+ uvthlvirniv )
k= htluievv )

his = Flair -w)+vy
+

=

thltzwyznv
'

#
in

. tnlnytw)ir+nfv=vy
+thttttzvutttzvstwyv)i i= tnlvintui )

= zthhwir + ztnhcvv

↳ F=tzuhw+}✓nv
←

hit = uitvy ,
hi= - ✓ x+uy

Ettlhirtiixtiy felhi )= - ixtiry

r÷ '

zinhiittzugdelhi
)

-

 - wtnluir - w ) =
. intlninvv )

+

tzihittzvadzlni
)

titnlvirtui ) + iutnliutuv )

= 'yluw+vi)in = httiutiv )ir

= 'zwhw+ 'zu(
tnluutvilirtthtuvtnitvj ";+ftwv+uDv

+ t.lv 'v+uw)i

+
'

zihittzvlfntiutwvknttnlvituihi
)

= (Euihtztnlwwtuyvsiztn# + his )iv

+ ( tzihtztntuyituiitvhiiuyn) )i

= whir + ihi
⇒ i. inhirtvhv
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- Now let's look @ some examples .

We've finally got command of some

useful math
, so lets use it to do some physics

!

F# CELESTIAL MECHANICS

- On HW 3 you will work out the velocity F E
.

acceleration F in

SPHERICAL POLAR COORDINATES
.

Heres what SPC look like :

Z
^

.

.is#Fg&.o

,
X = rsintf cos ¢ ← r is dist .

from origin ,

, y = r sin 0 sin ¢ G  is 4 down from the
-0 ,

7 . z  = r cos -0 Z - axis
,

& ¢ is the 4
r :

. CCW from the X axis in
i OE rc as×<¥

'

'

.

...
! > y 0<-0 E it c-

µp @

gthf × -

Y Plane '

0 E ¢ < ZF
sp @ 0  =  it

9
Equator @ -0=+12

¢ is like longitude .

¢ = Zit & ¢ = 0 refer

to the same place ,

- Your job on the HW will be to derive F E
,

E
.

I won't tell you the

full answer
,

but  in the special case where 0=+12 & doesn't

Change ( i.e.
,

a particle that always remains in the × - y plane ,
so 0=0--0 )

the acceleration Is :

This is  F w/0=Mz &

F = ( ii - r¢2 ) F + 0£ + ( zioj + r¢ ) §
← 0=0 '=0i

- What can we do with this ? Consider a planet orbiting a star .

As long as the mass of the star is mud larger than the mass

of the planet ( Ms > > Mp ) then the Center of mass of the

system is basically right @ the Center of the star , We 'll

make this the origin ( r= 0 ) of our SPC . To a goodapproximationthe planet orbits around this point ,

- ( As you know
,

the star E. planet really orbit their COM
,

which is

not quite @ the Center of the star .
We 'll ignore this complication

in our first pass @ describing planetary orbits ! )

- In mechanics you will show that the orbit always lies in a

plane . We can set up our SPC however we like
, so lets call

the plane of the orbit -0=+12 ( i.e.
,

the × .

y plane . )
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- Newton 's Universal Law of Gravitation tells us the force experienced

by the Plan

.lt#
The star  is @ r= 0

,
so the

F- = - GMs Mp ^
force On the planet  is in

- r the - I direction .:
L The star  is @ r=O

,
& the planet

is some distance r From the star .

nz

←
The planets

'

distance from the star  is

E -
-

-
.

.
,. '

'

rlt ) & its angular position  is ¢ It ) .

a. =← ..EE?oqigo.ii
,

'

→

y
Both change over time

,
but  it stays

,

'

. in the 0=+12 plane ,

K
×

- Now Newton 's 2nd Law gives us the EOM for the planet

E = Mph ⇒

Mplii
- r¢2 ) F + 0 E +

Mplziiftroj
) = - G Msrthpnr

⇒ it - r¢2 = -

9Mt Mp ( zioj + rjo

)=
O ←

E had no ¢
r

2 Component .

- Now we're going
to solve these eqns .

The next 4 pages are

advanced material you'll learn about  in THEORETICAL MECHANICS !

- So we've got a pair of Coupled ,
non - linear differential eqns .

How do we solve something like this ?

- Lets start w/ the ¢ equation ,
as it looks a little simpler . It

might not be immediately apparent ,
but the ¢ eqn . can be

written in terms of a total derivative :

Mp 1 Zito + roj ) = 0 ⇒ trade ( Mpr2¢ ) = 0

⇒ Etz ( Mpr2¢ ) = 0 I Since I is never equal to

Zero ( that 'd require r→os )

the other Factor  must be 0 .

- Since dldt of Mp r2¢ is zero
,

it  must be that Mp r2¢ is a constant .

In fact
,

it's just the planet 's angular momentum .

We 'll Call it J :

←
The ¢ EOM was simple blc

p
J = Mprlt )2¢lt ) = Constant

angular  momentum  is conserved .

You'll learn how to spot sit -

Both rlt ) & ¢lt ) will change Throughout rations like this in MECHANICS .

the orbit
,

but their product r2¢ will

alwayshave the same
,

Constant valve .
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- ( Just so we 're being complete ,

the angular  momentum  is I = F xp .
We

-

know F = rltlr & 13 = MPF = Mp ( ilt ) F + rlt ) ¢tt ) § when -0=+12
,

so

F = Mp rlt72¢lt ) Fx ¢ = - Mprlts
' jolt ) E

.

In the 0=+12 plane ,

El -0=+4 ) = - I
,

so F = Mp rlt72¢lt ) E
. )

- Now let's look @ the r eqn . Since Mp shows up on both sides it

cancels out & we get :

Flt ) - rlt )¢Ct)2 = - hmsrl
E)

2

- This looks complicated blc both re : ¢ appear ,
but we can use

what we learned about J to address this : j = Jhup . we

←
don't  expect Mp to

constantly J = Mprlt )2 jolt ) ⇒ ¢lt ) = Mtprtp = h÷p
change ,

so 's is also

Constant !

⇒ rich -

I
Mt )

3
= - Gmsrlt

)2

- Now how do we solve this ? Great question . But first
,

let

me ask you something .
Is this really the eqn .  you wait to

solve ? If you solve it
, you 'll know rlt ) . But If  your goal is

to figure out the shape of orbits
,

wouldn't  you really rather

know rc ¢ ) ?

nY4=Mzp
Figuring out r ( of ) - distance from

the star as a function of ¢ - seemse.
.  .

.

reel- # like a better way of describing the

0= it B. > ×

0=0,2 't shape of the orbit
, right ?

¢=3±
Z

- Okay ,
so how do we do that ? We can re - write terms like its &

Flt ) using
the chain # .

That is
,

if we assume r can be

written as a function of ¢ It )
,

then :

¥tHH=d¥ ddrdog
'

= nsjz.cl#
←

since ¢=÷z !

-
d¢

CHAIN RULE
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- For the ii term we need to use the chain rule twice

, as well

as the product rule .
You'll do this on HW 3 !

i=E÷ln=o¥¥oln=I¥¥oln÷m¥F)= ' "

- Once we've done this
,

we arrive @ any eqn .
for r(¢ ) :

± first . zr÷,slEi¥5 - r÷i= - areaK ¢ )4

- Wait ! Doesn't this look even More complicated ? Yes
,

but

as is often the Case
,

this is an illusion .
If we write the

eqn in terms of a net Variable it becomes very simple !

r (d) =hT¢ ,
⇒ dorff'= - ⇒ dough ,

des
=

...

d 0/2

⇒ DIGI + u( ¢ ) = a.gg
←

this is a mud

simpler equation !

- So
,

we started with two coupled ,
non - linear differential eqns

for rlt ) & ¢lt )
.

But we noticed that one of them just re -

minded us that angular momentum is conserved For this force
,

while the other one has turned into a simple - looking eqn .

for U( ¢ ) = 1/r( ¢ ) .

- If we'd tried to write out our eqns . in [ artesian coords

we would have been lost ! And if we hadn't set up our

SPC the right way , things would still be a mess !

.

THE RIGHT CHOICE OF COORDINATES

MAKES EVERYTHING EASIER !

You are ( or will soon be ) learning how to solve this

sort of eqn . in your Diff . Eq . class
.
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- I won't derive the Sol 'n
,

but if I write it down you can

easily check that it works
.

ul ¢ ) = C
,

cos (4) + Czsin ( 0 ) + M5÷
- -

This part satisfies This part has ¥oh=0 ,

d2U so  when  it shows up

dToz
+ U = 0

in u( of ) we get the RHS

- The eqn . was a second order differential eqn , so its most

general Sol 'n has two unknown constants in it , I called

them C
, & Cz .

We can pin them down for a particular planet

by giving two pieces of Info about  its position and lor velocity .

- Now
,

as you know
, planetary orbits are supposed to be

ellipses , right ? How do we see this ?

- First
,

let me write the Constants C
,

& Cz in a slightly
different form :

can always do this , I'm just saying
C

,
= Co Cost that given any two C

, & Cz ,
theres

sina
}←

I

Cz = Co A triangle :

←¥⇐t
Check that

- So now the 501 'n is :

- hmsljz has

L units  of Ylengtn .

U( ¢ ) = Cox ( Cos¢ cosx + sin ¢ sin × ) +
GMs_ Co has same

. z units !

if c- J

r=
's cosy - a)
u

I↳ rc 4) =

Fanie
J2

p
The numerator has units of

jz length .

The Combination

( Fsa ) E = cojyl Msa ) is a number

⇒ rl ¢ ) =
-

with no units
.

I + E Coskfx )
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- What exactly have we shown ? First

,
the shape of the

orbit is Characterized by three quantities .
One of these is the

ratio j4( Msa )
,

which has units of length .

Then there are two

plain numbers : the coeff , E of the cos in the denominator
,

and the x that shows up inside the cos .

l - This is j4( Msa )
r( ¢ ) =

-1+ E cos ( ¢ - x )

- As expected ,
when 0 < EL I this is an ELLIPSE w/ semi - major

axis a & semi - minor axis b
,

tilted @ angle x :

al

a=ns÷a× ,÷ez ← sotainiesfwoone

,

, foci .

b =
I

,

'

gx
Msa

' ' ¥2

,•o
> x

a

,

,

,

'

( ...
'

'

When E=O
,

a=b= R & the ←
Neptune's Moon Triton has

the lowest eccentricity of

orbit  is a Circle .

In that
any orbit  in the solar

cage j = 122/0 = RV ( ✓ =R¢ for
system : q= 0.000016 .

UCM ) q
'

R= The ⇒ M¥2 = AMEY

- But this also describes other sorts of orbits . When E=1

Our formula gives a parabola ,
and if E > I we get a

hyperbola
.

These are the orbits of an object with just enough

or more than enough ( respectively ) velocity to escape the

gravitationalattraction of the star ,

^

E > 1

E= 1

some Comets
,/

captured objects,→
/¥

>
← etc .

¥
>

, ,


