Curvilinear Orthocional Coordinate systems

- We will start w/ something you've seen before: Coordinates. You're used to describing where things are in terms of x, y, and z. These are called CARTESIAN COORDS. And you've probably also seen some other examples like SPHERICAL Polar or Cylindrical Polar Coords.
- But before we get into different kinds of coordinates, let's take a few minutes to to review what coordinates are supposed to do, and what they mean.

- Coordinates are a way of describing a biplane, eke To be useful, this description has to be unique and unambiguous.
- Many ways to do this! For instance, two planes intersect along a line, and three planes intersect at a point. So a description like $x=1 \mathrm{~m}$, $y=1 \mathrm{~m}$, and $z=1 \mathrm{~m}$ identifies a pt. by telling you about the intersection of three planes:
- The $y-z$ plane with $x=1$
- The $x-z$ plane $y=1$
- The $x-y$ plane $z=1$
- This probably seems a little complicated for something as simple as x, y, z. The idea is that coordinates give every point an ADDRESS that you know how to interpret.
- So coordinates are a way of assigning a unique set of numbers (the address) to every point. If I tell ya about some great new way of describing where things are, but I don't meet these requirements (a unique address for every point) then I don't have a good Coordinate System!
- Once I know how to describe where paints are, I can do things like tell you about the location of something (a baseball, say) at different times. I'd do that by giving you 3 functions of t - one for each number in the address. If I were using Cartesian coords this would be $x(t), y(t)$, and $z(t)$.
- But Cartesian cords aren't always the most useful! For example, if I was describing the motion of a satellite around the Earth, I might want to use its altitude, latitude, and longitude. Why? Because I expect some of those quantities might stay constant throughout its orbit, while all 3 of x, y, z would change.
- Depending on the problem, some coordinates are better-svited to what ya are trying to do!
- Now, in both those examples, each cord. is independent of the other two. That is, moving in the x-dir doesn't change the y ar z coord. Likewise, you can imagine increasing an object's altitude without changing its latitude or longitude. At any point there are 3 directions you can go in, and they are all "perpindicular."
- Mathematically, we state this by writing down 3 unit vectors for each direction. We use the dot product to cheek whether they are \perp. In Cart, Coords we'll call them $\hat{x}, \hat{y}, \hat{z}$:

$$
\begin{array}{rlr}
\hat{x} \cdot \hat{x}=1 & \hat{x} \cdot \dot{y}=0 & \hat{x} \cdot \hat{z}=0 \\
\hat{y} \cdot \hat{x}=0 & \hat{y} \cdot \hat{y}=1 & \hat{y} \cdot \hat{z}=0 \\
\hat{z} \cdot \dot{x}=0 & \hat{z} \cdot \hat{y}=0 & \hat{z} \cdot \hat{z}=1 \\
& & \\
& & \\
& & \\
& & \begin{array}{c}
\text { Remember: } \\
\text { have magnitude (length) }
\end{array} \\
=1!
\end{array}
$$

- In other coord systems they'll have diff. names, but there'll always be 3 of them (ar 2 in a plane) blk you need to describe 3 possible directions.
- So imagine I describe some coord system to ya, and let's call the 3 unit vectors \hat{e}_{1}, \hat{e}_{2} and \hat{e}_{3}. If all 3 are perpindicular:

$$
\hat{e}_{i} \cdot \hat{e}_{j}=\left\{\begin{array}{lll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
$$

Then we have an ORTHOGONAL COORDINATE SHSTEM. (Orthogonal is just another ward for perpindicular.)
${ }^{\uparrow}$ CARTESIAN, SPC, and Cylindrical polar lords are all OCS.

- As I said before, some cord. systems are more useful than others, depending on the problem or application. So knowing how to translate between different coord. systems is essential.
- Most of the coords we vie in physics are OCS, so we're going to learn how to translate statements about vectors $\&$ lords from one OCS into another!
Distances, Scale Factors, And Displacements
- Let's start simple, working in just a plane. You're used to $x-y$ coords. But you'se also seen Polar coords:

- Pt. A is located @ $x=1, y=1$. Or, you could also say it is $\sqrt{2}$ from the origin, © an angle of $\pi / 4$ (ccu) from the x-axis.
- PL.B is 1.12 from the origin, and the angle is 2.68 (radians!)
- We can describe every pt. in the plane by specifying its distance from the origin, and an angle CCW from the x-axis. (The choice of x-axis for the angle is arbitrary. We could use any other line, but we will always use the x-axis so there's no ambiguity!)
- And we can relate the two descriptions of a point using a little trig:

Weill use ρ for distance
$x=\rho \cos \phi$ from the origin, and ϕ $y=\rho \sin \phi$ for the angle.

IMPORTANT: x, y and ρ, ϕ are two equivalent descriptions of point A.

- Now, when we change from one cord system to another, the way we describe a particular point will change.
- But the points themselves clon't change! So things like the distance blt two points, or the arrow you draw to point from one to the other, those things do not change. We're going to make use of this to help us figure out how to translate various quantities blt two OCS.

You draw the same arrow blt $A \varepsilon_{i} B$, and it has the same length, whether you use Cartesian or Polar coors.

- We'll start by considering two pts in the plane that are very close to each other. One has Cart, cords $\left(x_{1}, y_{1}\right)$ \& the other is $\left(x_{2}, y_{2}\right)$.

- How far apart are they? The Pythagorean the. tells you that:

$$
(\Delta s)^{2}=(\Delta x)^{2}+(\Delta y)^{2}
$$

- Now imagine that they are very close together - so close that $\Delta x \varepsilon \Delta y$ essentially become the infinitesimal $d x$ e dy you're familiar with from Cal. Then:

$$
d s^{2}=d x^{2}+d y^{2}
$$

- What if we want to express this in polar coords? The dx blt the two pts could be due to diff. values of p, or of ϕ, or both:

$$
x=\rho \cos \phi \Rightarrow \underbrace{d x=\frac{\partial x}{\partial p} d \rho+\frac{\partial x}{\partial \phi} d \phi}_{\begin{array}{l}
\text { Total der, of a function }(x) \\
\text { of two variables }(p \varepsilon \phi) \\
\text { from multi-variable call. }
\end{array}} \Rightarrow d x=\cos \phi d \rho-\rho \sin \phi d \phi
$$

- Likewise for dy:

$$
y=p \sin \phi \Rightarrow d y=\frac{\partial y}{\partial p} d p+\frac{\partial y}{\partial \phi} d \phi=\sin \phi d p+p \cos \phi d \phi
$$

- Since we know how $d x \dot{\varepsilon} d y$ relate to $d p \varepsilon d \phi, \dot{\varepsilon}$ we know how to express the distance b / t the points in terms of $d x \dot{\varepsilon} d y$:

$$
\begin{aligned}
d s^{2}= & (\cos \phi d p-p \sin \phi d \phi)^{2}+(\sin \phi d p+p \cos \phi d \phi)^{2} \\
= & \left(\cos ^{2} \phi+\sin ^{2} \phi\right) d p^{2}+(-2 \cos \phi \sin \phi+2 \cos \phi \sin \phi) d p d \phi \\
& +\left(p^{2} \sin ^{2} \phi+p^{2} \cos ^{2} \phi\right) d \phi^{2} \\
d s^{2}= & d p^{2}+p^{2} d \phi^{2}
\end{aligned}
$$

- So, now we know how to translate our expression for the distance blt two infinitesimally separated points into polar coords:

$$
d x^{2}+d y^{2}=d p^{2}+p^{2} d \phi^{2}
$$

Two things to notice:

1) No $d p d \phi$ term in $d s^{2}$.
2) It's ' $p d \phi$ ' that shows up, not $d \phi$ by itself. That's blk $d \phi$ is just a change in the polar angle. The distance is pd ϕ !

- Now suppose I tell you about 2 new coords that I'll call $q_{1} \dot{\varepsilon} q_{2}$. If this is an OCS then $d s^{2}$ will have a $d q_{1}{ }^{2}$ term and a $d q_{2}{ }^{2}$ term, but no $d q_{1} d q_{2}$ term.
- Heres an example: Lords u, v related to x \& y by

$$
\begin{aligned}
& x=\frac{1}{2}\left(u^{2}-v^{2}\right) \quad y=u v \quad \longleftarrow \quad \text { PARABOLIC } \\
& \begin{aligned}
L d x & =u d u-v d v \quad d y=d u v+u d v \\
L d x^{2}+d y^{2} & =(u d u-v d v)^{2}+(v d u+u d v)^{2} \\
& =\left(u^{2}+v^{2}\right) d u^{2}+(-2 u v+2 u v) d u d v \\
& +\left(u^{2}+v^{2}\right) d v^{2}
\end{aligned} \\
& \Rightarrow d s^{2}= \\
& \hline\left(u^{2}+v^{2}\right)\left(d u^{2}+d v^{2}\right)
\end{aligned}
$$

- Like Cartesian af Polar, these coords have $d u^{2} \varepsilon d v^{2}$ showing up in $d s^{2}$, but not $d u d v$.
- In other words, $u \varepsilon v$ are perpindicular, just like $x \varepsilon y$ or $\rho \varepsilon \phi$.
- But notice that the coefficients of $d u^{2} \varepsilon^{\prime} d v^{2}$ look very different than the coeff of $d x^{2} \varepsilon d y^{2}$, or $d p^{2} \dot{\varepsilon} d \phi^{2}$.
- We call the $\sqrt{\cdots}$ of there coefficients 'ScALE FActors.'
- So if our coords are $q_{1} \dot{\varepsilon} q_{2}$, ε the scale factors are $h_{1} \varepsilon h_{2}$, then

The scale factors can be constants, or functions of one of the coords, or functions of both!

- For our previous examples:

$$
\begin{aligned}
& \text { CARTESIAN: }\left\{\begin{array}{l}
h_{x}=1 \\
h_{y}=1
\end{array} \quad \begin{array}{l}
\text { Sometimes we use numerals } \\
1,2 \text { to denote which cord; }
\end{array}\right. \\
& \text { POLAR: }\left\{\begin{array}{l}
h_{p}=1 \\
h_{\phi}=\rho \\
\text { sometimes we vase the name of }
\end{array}\right. \\
& \text { PARABOLIC: }\left\{\begin{array}{l}
\text { the coors ('x 'or' ' } \rho^{\prime}, \text { etc). } \\
h_{u}=\sqrt{u^{2}+v^{2}} \\
h_{v}=\sqrt{u^{2}+v^{2}}
\end{array}\right.
\end{aligned}
$$

- The Polar cord example already shows us what the scale factors mean. If we move blt two pts separated by angle $d \phi$ in the ϕ-direction, the corresponding distance is $\rho d \phi$, not $d \phi$.
- Likewise, in PARABOLIC coords, if two pts have the same v coord. but their u coords differ by du, the distance blt them is $d u \sqrt{u^{2}+v^{2}}$.
- So the scale factors show us how actual distances are related to the way the coordinates change when we move in various directions.
- What can we do with this? Well, for starters, we can say something about the distanas associated w/ moving in variars directions, so we can write out the displacement vector blt two infinitesimally nearby points:
 our notation Diss, moved in
y-dir... $d \vec{l}=d x \hat{x}+d y \hat{y} \leftarrow \underset{\sim}{\text { that indicates }}$
Dist, moved ... in x-dir... that indicates x-dir.

- More generally, if you have an OCS $q_{1}, q_{2} w /$ scale factors $h_{1} \dot{\varepsilon} h_{2}$, then $d \vec{l}$ is:

Remember, the scale factors can be constands or functions. It depends on the cord. system.

Distance blt two
pts. sep: by da,
in the \hat{q}_{1} direction.

- Wait, we're familiar w/ $\hat{x} \varepsilon \hat{y}$, but what abut $\hat{\rho} \varepsilon, \dot{\phi}$? And what do \hat{q}_{1} \& \hat{q}_{2} mean?
- Short answer: \hat{q}_{1} is the direction you go in if you increase q_{1}. So \hat{p} is radially outward; $\hat{\phi}$ is CCW. We'll discuss this in more detail in a moment!
- Besides helping us understand how to express the infinitesimal displacement $d \vec{l}$ in different OCS, the scale factors also help us sort out area and volume elements for integrals.
- Consider Cylindrical Polar Coordinates. They're just polar coords, along w / z :

When z is constant, little patches of area have

$$
d A=\rho d \phi d \rho
$$

... when ρ is constant, it's

$$
d A=\rho d \phi d z
$$

... and when ϕ is constant it's

$$
d A=d p d z
$$

The volume element in CPC is:

$$
d V=p d \phi d p d z
$$

- The dA's are little rectangles, and the $d V$ is a little rectangular prism. The scale factor ' ρ ' shows up in the length of the side associated $w /$ changing ϕ.
- If we have an OCS $q_{1}, q_{2}, q_{3} w /$ scale factors h_{1}, h_{2}, and h_{3}, then the area $\dot{\varepsilon}$ volume elements are:

$$
d A=\left\{\begin{array}{lc}
h_{1} h_{2} d q_{1} d q_{2} & \left(\text { const. } q_{3}\right) \\
h_{1} h_{3} d q_{1} d q_{3}\left(\text { const. } q_{2}\right) & d V=h_{1} h_{2} h_{3} d q_{1} d q_{2} d q_{3} \\
h_{2} h_{3} d q_{2} d q_{3}\left(\text { const. } q_{1}\right) & \vdots \\
h_{1} d q_{1} & h_{h_{2} d q_{2}}
\end{array}\right.
$$

- This might look complicated, but think about what we're doing: it's just some statements about three possible lengths, one for each of the three ways you could change one of the coordinates.

$$
\begin{aligned}
& d l_{1}=h_{1} d q_{1} \\
& d l_{2}=h_{2} d q_{2} \\
& d l_{3}=h_{3} d q_{3}
\end{aligned}
$$

If youlre on a surface where q_{1} is constant (like $p=$ canst. on the wall of a cylinder, or $r=$ canst, on surface of a sphere) then the two remaining ways you can move have lengths $h_{2} d q_{2} \& h_{3} d q_{3}$; those are the sides of an infinitesimal rectangle w/ area $d A=h_{2} h_{3} d q_{2} d q_{3}$, etc.
ods and basis vectors

- When we were talking about $d \vec{l}$, we said something like ' \hat{q}_{1} is the direction you go in when you increase q_{1}.', So \hat{x} is the dir. you move in when you increase $x, \hat{\rho}$ is moving out ward from the origin in the plane (or the z-axis in 3-D), etc.
- But is that useful? What if I told you about a vector \vec{A} by describing it's components in Cartesian coords:

$$
\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}
$$

- Could you then give me a description of the vector in some other OCS?

$$
A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}=\overbrace{A_{p} \hat{p}+A_{\phi} \hat{\phi}}^{i}+A_{z} \hat{z}
$$

- No; we need some way of converting Cart. basis vectors into CPC (or other OCS) basis vectors. How do we do that?
- First, let's try to visualize \hat{p} ध ϕ.
- We know that \hat{p} moves radially outward from the origin, $\dot{\text { b }}$ \$ mores CCW.

- Notice that \hat{x} \& \hat{y} point in the same dir everywhere. That is, \hat{x} looks the same e every $p t$, same for \hat{y}.
- Not so for $\hat{\rho} \dot{\varepsilon} \dot{\phi}$! They mean the same thing everywhere, but they look different.
- Note, though, that they are still unit vectors, and they are still 1 to each other:

$$
\mu \hat{p} \cdot \hat{p}=1 \quad \hat{\phi} \cdot \hat{\phi}=1 \quad \hat{p} \cdot \hat{\phi}=0
$$

Note that I'm talking about $\hat{\rho}$: $\dot{\phi}$ @ a specific pt. I'm not comparing \hat{p} at one pt. to $\hat{p} @$ another pl, etc.

- Okay, so it looks like $\hat{x} \varepsilon \cdot \hat{y}$ are constant, while $\hat{\rho} \varepsilon \cdot \hat{\phi}$ 'look' different @ different points. How can I relate them? That is, how do I convert from \hat{x}, \dot{y} to $\hat{p}, \hat{\phi} \dot{\varepsilon}$ vice-versa?
- Consider a pt. w/ Cart. coords x, y. The position vector for that point is

$$
\vec{r}=x \hat{x}+y \hat{y}
$$

- And we know how to write $x \dot{\varepsilon} y$ in terms of $\rho \dot{\varepsilon} \phi$:

$$
\vec{r}=p \cos \phi \hat{x}+p \sin \phi \hat{y}
$$

- Now, if we change p a little bit, we know that moves us to a nearby $p t$. separated from the 1 st point by dp $\hat{\rho}$, right? So let's look @ the derivative of \vec{r} with respect to p.

$$
\begin{aligned}
& \vec{r}=\rho \cos \phi \hat{x}+\rho \sin \phi \hat{y} \rightarrow \frac{d \vec{r}}{d \rho}=\frac{d}{d p}(\rho \cos \phi \hat{x})+\frac{d}{d \rho}(\rho \sin \phi \hat{y})
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \frac{d}{d \rho}(\rho \cos \phi \hat{x})=\cos \phi \hat{x} \\
& \frac{d}{d \rho}(\rho \sin \phi \hat{y})=\sin \phi \hat{y}
\end{aligned}
$$

- So if we change p by dp, the position vector changes by:

$$
d \vec{r}=(\cos \phi \hat{x}+\sin \phi \hat{y}) d \rho
$$

- The part in front of dp must be what we mean by $\hat{\rho}$!

$$
\rightarrow \hat{\rho}=\cos \phi \hat{x}+\sin \phi \hat{y}
$$

\uparrow Check: $\hat{p} \cdot \hat{p}=1$, as we expect for a unit vector?

$$
\begin{aligned}
\hat{p} \cdot \hat{p} & =\cos ^{2} \phi \hat{y} \cdot \vec{x}^{\prime}+2 \cos \phi \sin \phi \hat{x} \vec{y}^{\prime}+\sin ^{2} \phi \hat{y} \cdot \hat{y}^{\prime} \\
& =\cos ^{2} \phi+\sin ^{2} \phi=1
\end{aligned}
$$

- Let's try this w/ $\phi \dot{\varepsilon} \hat{\phi}$!

As before, $\frac{d \rho}{d \phi}=0$,

$$
\begin{aligned}
& \frac{d \vec{r}}{d \phi}=-\rho \sin \phi \hat{x}+\rho \cos \phi \hat{y} \quad \text { and } \frac{d \hat{x}}{d \phi}=\frac{d \dot{y}}{d \phi}=0 . \\
& L d \vec{r}=\rho(-\sin \phi \hat{x}+\cos \phi \hat{y}) d \phi
\end{aligned}
$$

- Is $\hat{\phi}$ the part in front of $d \phi$? Not quite; check it's lenght, $(-p \sin \phi \hat{x}+\rho \cos \phi \hat{y}) \cdot(-\rho \sin \phi \hat{x}+\rho \cos \phi \hat{y})=p^{2}\left(\sin ^{2} \phi+\cos ^{2} \phi\right)=\rho^{2}$
- So to get $\hat{\phi}$ we need to divide the stuff in front of $d \phi$ by its magnitude $\sqrt{p^{2}}=p$:

$$
\hat{\phi}=-\sin \phi \hat{x}+\cos \phi \hat{y}
$$ We divided by $\left|\frac{d \vec{r}}{d \phi}\right|$, which is the scale factor $h_{\phi}=\rho$. Is it clear why?

- And now we know how to convert blt Cart. directions $\dot{\text { - }}$ polar directions!

$$
\begin{aligned}
& \hat{\rho}=\frac{1}{\left|\frac{d \vec{r}}{d \rho}\right|} \frac{d \vec{r}}{d \rho}=\cos \phi \hat{x}+\sin \phi \hat{y} \\
& \hat{\phi}=\frac{1}{\left|\frac{d \vec{r}}{d \phi}\right|} \frac{d \vec{r}}{d \phi}=-\sin \phi \hat{x}+\cos \phi \hat{y}
\end{aligned}
$$

Can you invert this $\dot{\varepsilon}$ write \hat{x} \& \hat{y} as combinations of $\hat{p} \varepsilon \dot{\phi}$?

- Now, we said that POLAR coords are an OCS, and that was supposed to mean that the unit vectors are perpindicular. Is that the case?

$$
\hat{p} \cdot \hat{\phi}=(\cos \phi \hat{x}+\sin \phi \hat{y}) \cdot(-\sin \phi \hat{x}+\cos \phi \hat{y})=-\cos \phi \sin \phi+\sin \phi \cos \phi=0
$$

- For any other OCS, wed do the same thing. First, write $x \& y$ in terms of $q_{1} \varepsilon q_{2}, \dot{\varepsilon}$ then:

$$
\hat{e}_{i}=\frac{1}{\left|\frac{d \vec{r}}{d q_{i}}\right|} \frac{d \vec{r}}{d q_{i}}=\frac{1}{h_{i}} \frac{d \vec{r}}{d q_{i}}
$$

- Remember, i is just a label (or 'index') that we use to indicate which lord. we're talking about.
\uparrow Dividing by the magnitude insures that we get a unit vector, as we saw in the $\hat{\phi}$ example.
- Let's do one more detailed example to make sure this is all clear. We'll work out the unit vectors for the Parabouk coors from earlier.
- We defined Parabolic coords as

$$
x=\frac{1}{2}\left(u^{2}-v^{2}\right) \quad y=u v
$$

This replaces the usual Cartesian grid w/ a 'grid' made out of a bunch of parabolas. Parabolic coords show up sometimes in orbital mechanics.

- Before we work out the unit vectors, let's take a moment to think about what these coordinates look like. What sort of grid do they make?
- First, you need to know that we always assume that one of the parabolic coords is non-negative. We'll always use non-negative $u: 0 \leq u<\infty$. Then $-\infty<v<\infty$.
- (Why? Otherwise pairs like $u=4, v=3$ and $u=-4, v=-3$ would refer to the same x, y point! Coords should give every pt. a unique address. Here we deal $w /$ that by assuming u is never negative. That's not the only way to do it, but there's no mud to dive into that right now.)
- So how do we visualize Parabolic coords? We think of Cartesian coords as a grid blc $x=3$ is a vertical line, and $y=-2$ is a horizontal line, etc. So what do we get when we set $u=3$ or $v=-2$?
- Well, what pts in the plane correspond to a constant value of v ? Use ' + ' bloc we

$$
\begin{aligned}
& x=\frac{1}{2} u^{2}-\frac{1}{2} v^{2} \rightarrow u^{2}=v^{2}+2 x \Rightarrow u=\ldots+\sqrt{v^{2}+2 x} \\
& y=u v=v \sqrt{v^{2}+2 x} \\
& \rightarrow y=v \sqrt{v^{2}+2 x} \\
& \rightarrow
\end{aligned}
$$ parabola.

- Likewise, what points in the plane correspond to a constant value of u ? \checkmark can be either pos.

$$
\begin{aligned}
& x=\frac{1}{2} u^{2}-\frac{1}{2} v^{2} \rightarrow v^{2}=u^{2}-2 x \Rightarrow v= \pm \sqrt{u^{2}-2 x} \\
& y=u v= \pm u \sqrt{u^{2}-2 x} \\
& \rightarrow y= \pm u \sqrt{u^{2}-2 x} \\
& u \geqslant 0 \text {, but since we } \\
& \text { have I we get both } \\
& \text { halves of the parabola. }
\end{aligned}
$$

- So now we can visualize the Parabolic coordinates grid by plotting several of these parabolas corresponding to diff. values of $u \varepsilon v$.

- Back to our calculation! We already worked out the scale factors:

$$
\begin{aligned}
\left.\begin{array}{l}
d x=u d u-v d v \\
d y=v d u+u d v
\end{array}\right\} \Rightarrow d s^{2} & =\left(u^{2}+v^{2}\right)\left(d u^{2}+d v^{2}\right) \\
\Rightarrow & h_{u}=h_{v}=\sqrt{u^{2}+v^{2}}
\end{aligned}
$$

- Now let's write out the position vector, w/ $x \varepsilon$ y in terms of $u \dot{\varepsilon} v$, and find the unit vectors.

$$
\Rightarrow \hat{v}=-\frac{v}{\sqrt{u^{2}+v^{2}}} \hat{x}+\frac{u}{\sqrt{u^{2}+v^{2}}} \hat{y}
$$

As a final chick, I confirm that $\hat{\psi}$

$$
\hat{u} \cdot \hat{v}=-\frac{u v}{u^{2}+v^{2}}+\frac{v u}{u^{2}+v^{2}}=0 \stackrel{v}{\&} \text { are orthogonal }
$$

- So PARABOLIC coords are indeed an OCS. We can draw \hat{x} $\dot{\varepsilon} \hat{v} @$ a few pts.

$$
\begin{array}{ll}
u=1, v=3: \\
\hat{u}=\frac{1}{\sqrt{10}} \hat{x}+\frac{3}{\sqrt{10}} \hat{y}, & \hat{v}=-\frac{3}{\sqrt{10}} \hat{x}+\frac{1}{\sqrt{10}} \hat{y} \\
u=4, v=-2 & \\
\hat{u}=\frac{2}{\sqrt{5}} \hat{x}-\frac{1}{\sqrt{5}} \hat{y}, & \hat{v}=\frac{1}{\sqrt{5}} \hat{x}+\frac{2}{\sqrt{5}} \hat{y}
\end{array}
$$

$\leftarrow \hat{u}$ always pts in the direction of increasing u, and \hat{v} in the dir. of increasing \hat{v}. Notice that, even though the $x \& y$ components of $\hat{u} \xi \hat{v}$ change, they always have the same relative orientation.

$$
\begin{aligned}
& \vec{r}=x \hat{x}+y \hat{y}=\frac{1}{2}\left(u^{2}-v^{2}\right) \hat{x}+u v \hat{y} \\
& \frac{d \vec{r}}{d u}=\begin{array}{l}
u \hat{x}+v \hat{y} \\
\underset{\frac{d x}{d u}}{\tau} \frac{d y}{d u}
\end{array} \quad\left|\frac{d \vec{r}}{d u}\right|=\sqrt{u^{2}+v^{2}}=h_{u} \\
& \Rightarrow \hat{u}=\frac{u}{\sqrt{u^{2}+v^{2}}} \hat{x}+\frac{v}{\sqrt{u^{2}+v^{2}}} \hat{y}
\end{aligned}
$$

- As a check, what if I propound some new coords related to Cartesian coords by

$$
x=\frac{1}{2}\left(\alpha^{2}+\beta^{2}\right) \quad y=\alpha \beta
$$

- They look pretty similar to Parabolic cords. But are they an OCS? Do you med to derive the unit vectors to check? No. Give me one simple reason why this is not an OCS. (HINT: Look @ dst ${ }^{2}$.) Now, give me an even simpler reason why it's not even a good coord. system!.

Translating a Vector From Cartesian to an oc

- We started the last section by asking how, given the x, y, z components of a vector, we would go about describing it in some other OCS:

$$
\vec{A}=\underbrace{A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}}_{\text {Given these... }}=\underbrace{A_{1} \hat{e}_{1}+A_{2} \hat{e}_{2}+A_{3} \hat{e}_{3}}_{\text {What are } A_{1}, A_{2}, A_{3} \text { ? }}
$$

- And now we're equipped to answer it!
- First, how do we determine the components of a vector? The A_{1} component of \vec{A} is 'how much' of \vec{A} is in the \hat{e}_{1} direction, and likewise for $A_{2} \dot{\varepsilon} A_{3}$. We determine that with the dot product of $\vec{A}_{\dot{\varepsilon}}$. each unit vector.
- Recall:

$$
\Rightarrow A_{1}=\vec{A} \cdot \hat{e}_{1} \quad A_{2}=\vec{A} \cdot \hat{e}_{2} \quad A_{3}=\vec{A} \cdot \hat{e}_{3}
$$

- Once we know how to express the \hat{e}_{i} in terms of $\hat{x}, \hat{y}, \hat{z}$, we can evaluate those clot products.
- Let's look @ our POLAR coords example. There, we found:

$$
\hat{p}=\cos \phi \hat{x}+\sin \phi \hat{y} \quad \hat{\phi}=-\sin \phi \hat{x}+\cos \phi \hat{y}
$$

- So if I gave you the Cart. components A_{x} : Ay of some vector, then:

$$
\begin{aligned}
A_{p}=\hat{p} \cdot \vec{A} & =(\cos \phi \hat{x}+\sin \phi \hat{y}) \cdot\left(A_{x} \hat{x}+A_{y} \hat{y}\right) \\
& =A_{x} \cos \phi+A_{y} \sin \phi \\
A_{\phi}=\hat{\phi} \cdot \vec{A} & =(-\sin \phi \hat{x}+\cos \phi \hat{y}) \cdot\left(A_{x} \hat{x}+A_{y} \hat{y}\right) \\
& =-A_{x} \sin \phi+A_{y} \cos \phi \\
\Rightarrow \vec{A} & =\left(A_{x} \cos \phi+A_{y} \sin \phi\right) \hat{p}+\left(-A_{x} \sin \phi+A_{y} \cos \phi\right) \hat{\phi}
\end{aligned}
$$

The Cart. comp. Ax $\dot{\text { E. Dy may just }}$ be numbers, or they could be some functions of $x \varepsilon \cdot y$, in which case you might want to re-write them using $x=\rho \cos \phi \& y=\rho \sin \phi$!

- As an example, consider the vector $\vec{A}=4 \hat{x}+7 \hat{y}$:

$$
\rightarrow \vec{A}=(4 \cos \phi+7 \sin \phi) \hat{p}+(-4 \sin \phi+7 \cos \phi) \hat{\phi}
$$

Notice that the $A_{\rho} \varepsilon A_{\phi}$ components change when ϕ changes. What? Isn't it a constant vector? YES. Remember that $\hat{p}!\dot{\phi}$ change, too!

- A more interesting example is the Position VEcTOR. How do We write \vec{r} in polar coords?

$$
\vec{r}=x \hat{x}+y \hat{y}+z \hat{z} \longleftarrow \text { POLAR COORS. }
$$

$$
\left.\begin{array}{rl}
r_{p}=\hat{\rho} \cdot \vec{r} & =(\cos \phi \hat{x}+\sin \phi \hat{y}) \cdot(x \hat{x}+y \hat{y}+z \hat{z}) \\
& =x \cos \phi+y \sin \phi \\
& =p \cos ^{2} \phi+p \sin ^{2} \phi
\end{array}\right\} \begin{aligned}
& x=p \cos \phi \\
& y=p \sin \phi \\
&
\end{aligned}=p
$$

$$
\begin{aligned}
r_{\phi}=\hat{\phi} \cdot \vec{r} & =(-\sin \phi \hat{x}+\cos \phi \hat{y}) \cdot(x \hat{x}+y \hat{y}+z \hat{z}) \\
& =-x \sin \phi+y \cos \phi \\
& =-p \cos \phi \sin \phi+p \sin \phi \cos \phi \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
r_{z}= & \hat{z} \cdot \vec{r}=z \\
& \Rightarrow \vec{r}=p \hat{p}+z \hat{z} \\
& \uparrow
\end{aligned}
$$

IMPORTANT: \vec{r} does not have
 a $\hat{\phi}$ component. Why is this?

- We can work out the components of any vector in any OCS this way; we just need to work out the relationships blt the basis vectors in the two coord. systems.

Velocity, Acceleration, And keeping track of Changing Unit Vectors

- One of the nice things about Cartesian coords is that $\hat{x}, \hat{y}, \dot{\varepsilon}, \hat{z}$ are constant; that is, © any pts $\left(x_{1}, y_{1}, z_{1}\right) \&\left(x_{2}, y_{2}, z_{2}\right)$ they look exactly the same.
- Another way of stating this idea, that the Cart, basis vectors don't change from pt. to pt., is to say that their derivatives are zero (like any constant!)

$$
\frac{d \hat{x}}{d x}=\frac{d \hat{x}}{d y}=\frac{d \hat{x}}{d z}=0, \dot{\varepsilon} \text { similar for } \hat{y} \dot{\varepsilon}, \hat{z}
$$

- But this isn't true for the other OCS we've seen; vectors like $\hat{\rho} \dot{\varepsilon} \hat{\phi}$ seem to change direction (but not length - they're always unit vectors) from pt. to pt.
- (NOTE: Therés a bit of a subtle point here. A unit vector like \hat{p} or $\hat{\phi}$ means the same thing @ every pt; \hat{p} means 'radially away from the origin no matter where you are. So in that sense all OCS basis vectors are 'constant.' Here, when we say a vector changes from pt. to pt. We mean that the arrows yo draw © each pt. look different. But you don't rued to worry about this distinction in this class!)
- As an example, consider the vector \hat{p} @ two pts. $w /$ the same y-coord. but diff. x-coords:

Both wit vectors, but you can see that the directions (orientations of arrows) are different.

- If a quantity changes as we change x, that means:

$$
\frac{d \hat{p}}{d x} \neq 0
$$

- Well, we know how to write $\hat{\rho}$ in terms of the constant unit vectors $\hat{x} \dot{\varepsilon} \hat{y}$, so let's chuck this:

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\hat{p} & =\cos \phi \hat{x}+\sin \phi \hat{y}=\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{x}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{y} \\
\frac{x}{p} & =\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \frac{y}{p}=\frac{y}{\sqrt{x^{2}+y^{2}}} \quad\left(\frac{d y}{d x}=0\right.
\end{array} \\
L \frac{d \hat{p}}{d x}=\left(\frac{1}{p}-\frac{x}{p^{2}} \frac{d p}{d x}\right) \hat{x}+\left(\frac{0}{p}-\frac{y}{p^{2}} \frac{d p}{d x}\right) \hat{y} \\
\uparrow & \frac{1}{2 \sqrt{x^{2}+y^{2}}} \cdot 2 x=\frac{x}{p}
\end{array}\right)
$$

$$
\Rightarrow \frac{d \hat{p}}{d x}=\frac{\sin \phi}{p}(\sin \phi \hat{x}-\cos \phi \dot{y})
$$

Makes sense! On last page saw that for $0 \leq \phi<\pi / 2$, increasing x made $\hat{\rho}$ longer in x-dir, ε e shorter in y-dir.

- Another example is how $\hat{\rho}$ ह, $\dot{\phi}$ change as we move CCW around the origin:

$$
\begin{aligned}
& \frac{d \hat{p}}{d \phi}=-\sin \phi \hat{x}+\cos \phi \hat{y}=\hat{\phi} \\
& \frac{d \hat{\phi}}{d \phi}=-\cos \phi \hat{x}-\sin \phi \hat{y}=-\hat{p}
\end{aligned}
$$

Do these \simeq describe change in $\hat{p} \dot{\phi}$ blt pts. $1 \varepsilon 2$?

- Note, however, that $\hat{p} \dot{\varepsilon}, \hat{\phi}$ don't change when we move in the $\hat{\rho}$ direction - radially inward or outward:

$$
\begin{aligned}
& \frac{d \hat{p}}{d p}=\frac{d}{d p}(\cos \phi \hat{x})+\frac{d}{d \rho}(\sin \phi \hat{y})=0 \\
& \frac{d \hat{\phi}}{d p}=\frac{d}{d p}(-\sin \phi \hat{x})+\frac{d}{d p}(\cos \phi \hat{y})=0
\end{aligned}
$$

- Why do we care about this? First, b/c these vectors may show up in integrals, where we have to remember that they change from pt. to pt.

$$
\int_{0}^{\pi} d \phi \hat{\phi} \stackrel{?}{=}\left\{\begin{aligned}
& \pi \\
& i t \text { Assuming } \hat{\phi} \text { is constant gives the wrong } \\
& \text { answer! What wald this answer even mean? } \\
& \dot{\phi} \varrho \text { what point? } \\
&\left.\begin{array}{rl}
d \phi(-\sin \phi \hat{x}+\cos \phi \hat{y}) & =\left.(\cos \phi \hat{x}+\sin \phi \hat{y})\right|_{0} ^{\pi} \\
0 & =(-1-(1)) \hat{x}+(0-0) \hat{y} \\
& =-2 \hat{x}
\end{array}\right)
\end{aligned}\right.
$$

- The same goes for derivatives, and this will be especially relevant in your THEORETICAL MECHANICS course!
- As we said on the first day, one reason to use a cord. system is so ya can tell me about the motion of some object. In Cart. coords you could do this by giving me three functions that specify where it is @ different times: $x(t), y(t)$, and $z(t)$. Then its position is:

$$
\vec{r}(t)=x(t) \hat{x}+y(t) \hat{y}+z(t) \hat{z}
$$

Constant Speed!!

- For instance, a particle that is moving ${ }^{\text {in }}$ a circle in the $x-y$ plane, completing its rotation with period T (so freqvency $\mathcal{F}=1 / T$) has position:

$$
\vec{r}(t)=R \cos (\omega t+\delta) \hat{x}+R \sin (\omega t+\delta)+0 \hat{z}
$$

Radius 'Angular frequency'
'Phase' controls where it is @ $t=0$ s. If $\delta=0$

$$
W=2 \pi \mathcal{J}=\frac{2 \pi}{T}
$$

$$
\text { it starts } C \times(0)=R \quad \text {. }
$$

$$
y(0)=0 \text {; if } \delta=\pi / 2 \text { it }
$$

$$
\text { starts © } x(0)=0, y(0)=R \text {, etc. }
$$

- Now, once you know the position as a function of time, you can also tell me the object's velocity ε acceleration.

$$
\begin{aligned}
& \vec{v}(t) \equiv \frac{d \vec{r}}{d t}=\frac{d x}{d t} \hat{x}+\frac{d y}{d t} \hat{y}+\frac{d z}{d t} \hat{z} \longleftarrow \\
& \vec{a}(t) \equiv \frac{d \vec{v}}{d t}=\frac{d^{2} x}{d t^{2}} \hat{x}+\frac{d^{2} y}{d t^{2}} \hat{y}+\frac{d^{2} z}{d t^{2}} \hat{z}
\end{aligned}
$$

Notice: Since $\hat{x}, \hat{y}, \dot{\xi}$ \hat{z} are constant, we don't worn y about $\frac{d \dot{x}}{d t}, \frac{d \dot{y}}{d t}, \frac{d \tilde{z}}{d t}=0!$

- For our particle moving in a circle weld get

$$
\begin{aligned}
\vec{v}(t) & =-R \omega \sin (\omega t+\delta) \hat{x}+R \omega \cos (\omega t+\delta)+0 \hat{z} \\
|\vec{v}| & =\sqrt{R^{2} \omega^{2} \sin ^{2}(\omega t+\delta)+R^{2} \omega^{2} \cos ^{2}(\omega t+\delta)}=R \omega \\
\vec{a}(t) & =-R \omega^{2} \cos (\omega t+\delta) \hat{x}-R \omega^{2} \sin (\omega t+\delta)+0 \hat{z}
\end{aligned}
$$

- This all makes sense, but Cart. coords seem like a clumsy way to describe something moving in a circle. Why not use POLAR coords, which have circles ($\rho=$ constant) built in? Using $x=\rho \cos \phi$ \& $y=\rho \sin \phi$, get

$$
\vec{r}(t)=\underbrace{R}_{\tau} \hat{p} \hat{p}+0 \hat{z} \quad \hat{p}=\cos (\underbrace{(\omega t+\delta)}_{\phi \leftarrow \delta} \hat{x}+\sin (\omega t+\delta) \hat{y}
$$

- Now here's where we have to be careful! Just looking e \vec{r}, we see $\rho=R$. The info about its motion - the fact that ϕ is changing - is hidden in $\hat{\rho}$.
- In other wards, \hat{p} depends on ϕ ह่ $\phi=w t+\delta$, so \hat{p} depends on t as well. When we calculate $\vec{v} \dot{\varepsilon} \vec{a}$:

$$
\begin{aligned}
\vec{v} & =\frac{d \vec{r}}{d t}=\frac{d}{d t}(R \hat{p})=R \frac{d \hat{p}}{d t}=R \frac{d \phi}{\frac{d \phi}{d t} \frac{d \hat{p}}{d \phi}} \leftarrow \hat{C H}_{\text {calculation }}^{\hat{\phi}} \text { from artier } \\
\rightarrow & \vec{v}=R \omega \hat{\phi} \\
& |\vec{v}|=R \omega \\
\vec{a} & =\frac{d \vec{v}}{d t}=R \omega \frac{d \hat{\phi}}{d t}=R \omega \frac{d \phi}{d t} \frac{d \hat{\phi}}{d \phi}=R \omega^{2}(-\hat{p}) \\
& \rightarrow \vec{a}=-R \omega^{2} \hat{p}
\end{aligned}
$$

- Once we remembered that the PoLAR unit vectors change from pt. to pt., the calk. really was much easier to carry out than it was in CARTESIAN. The right coord system always makes things easier!
- This was a simple example. What about more complicated motion? Suppose we are working in CPC \& an object's $\rho, \phi, \varepsilon z$ are all changing over time.

$$
\vec{r}(t)=p(t) \underbrace{\hat{p}(t)}_{\tau}+z(t) \hat{z}
$$

- To work out $\vec{v} \dot{\varepsilon} \cdot \vec{a}$, we just need to remember that \hat{p} depends on ϕ, and ϕ depends on t :

$$
\vec{V}=\frac{d \vec{r}}{d t}=\frac{d p}{d t} \hat{\rho}+\rho \frac{d \hat{\rho}}{d t}+\frac{d z}{d t} \hat{z}+z \frac{d \hat{z}}{d t}
$$

$$
\begin{aligned}
\vec{V} & =\frac{d \rho}{d t} \hat{\rho}+\rho \frac{d \hat{\rho}}{d t}+\frac{d z}{d t} \hat{z} \\
& =\frac{d \rho}{d t} \hat{\rho}+\rho \frac{d \phi}{d t} \frac{d \hat{\rho}}{d \phi}+\frac{d z}{d t} \hat{z} \\
& =\frac{d \rho}{d t} \hat{\rho}+\rho \frac{d \phi}{d t} \hat{\phi}+\frac{d z}{d t} \hat{z} \\
\rightarrow \vec{V} & =\frac{d \rho}{d t} \hat{\rho}+\rho \frac{d \phi}{d t} \hat{\phi}+\frac{d z}{d t} \hat{z}
\end{aligned}
$$

Does this make sense? If p changes by $d p$, that's a dist. $d p$ in $\hat{\rho}$ dir, so $v_{p}=d p / d t$. If ϕ changes by $d \phi$, distance is $\rho d \phi$, so $v_{\phi}=\rho d \phi / d t$. And v_{z} is the same as Cartesian, of carse.

- This is probably a good time to introduce you (if you haven't already seen (t) to the 'dot' notation for time derivatives:

$$
\dot{f}(t)=\frac{d f}{d t} \quad \ddot{f}=\frac{d^{2} f}{d t^{2}} \quad \ddot{f}=\frac{d^{3} f}{d t^{3}}, \text { etc }
$$

- So in CPC, the velocity is:

$$
\vec{V}=\dot{\vec{r}}=\dot{p} \hat{p}+\rho \dot{\phi} \hat{\phi}+\dot{z} \hat{z}
$$

- Likewise, for the acceleration, we have:

$$
\begin{aligned}
& \vec{a}=\dot{\vec{v}}=\underbrace{\ddot{p} \hat{p}+\dot{p} \dot{\hat{p}}}_{\text {This is just the }}+\underbrace{\dot{p} \dot{\phi} \hat{\phi}+p \ddot{\phi} \hat{\phi}+p \dot{\phi} \dot{\phi}}_{\text {Same ere }}+\ddot{z} \hat{z}+\dot{z} \dot{z} \ddot{z}^{0} \\
& \text { product rule written in }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\ddot{p}-p \dot{\phi}^{2}\right) \hat{p}+(2 \dot{p} \dot{\phi}+p \ddot{\phi}) \hat{\phi}+\ddot{z} \hat{z} \\
& \vec{a}=\left(\ddot{p}-p \dot{\phi}^{2}\right) \hat{p}+(2 \dot{p} \dot{\phi}+p \ddot{\phi}) \hat{\phi}+\ddot{z} \hat{z}
\end{aligned}
$$

- To summarize, our expressions for position, velocity, and acceleration in Cylindrical polar Coordinates are:

$$
\begin{aligned}
& \vec{r}=p \hat{p}+z \hat{z} \quad \longleftarrow \quad \begin{array}{l}
\text { Remember: No } \phi \\
\text { Component! Info above }
\end{array} \\
& \vec{v}=\dot{p} \hat{p}+p \dot{\phi} \hat{\phi}+\dot{z} \hat{z} \text { is in } \dot{p} \text { : } \\
& \vec{a}=\left(\ddot{p}-p \dot{\phi}^{2}\right) \hat{p}+(2 \dot{p} \dot{\phi}+\rho \ddot{\phi}) \hat{\phi}+\ddot{z} \hat{z}
\end{aligned}
$$

- Things work the same way in any other OCS w/ coordinates $q_{i} \dot{\varepsilon}$ basis vectors \hat{e}_{i}. We just need to know a few things:
(1) How to write the pos. \vec{r} in terms of the $q_{i} \varepsilon \hat{e}_{i}$. Be careful! This may not be as simple as $q_{1} \hat{e}_{1}+q_{2} \hat{e}_{2}+q_{3} \hat{e}_{3}$-look @ CPC where there is no $\phi \hat{\phi}$ term!
(2) How to express the basis vectors \hat{e}_{i} as functions of the coordinates $q_{i} \dot{\varepsilon}$ the Cartesian basis vectors $\hat{x}, \hat{y}, \hat{z}$.
- As an exercise, see if you can work out $\vec{v} \dot{\varepsilon} \vec{a}$ for the Parabolic Cylindrical lords we looked at:

$$
(x, y, z) \rightarrow\left(\frac{1}{2}\left(u^{2}-v^{2}\right), u v, z\right)
$$

Parabolic Coords Example

$$
\begin{array}{ll}
\left.\begin{array}{ll}
x=\frac{1}{2}\left(u^{2}-v^{2}\right) & d x=u d u-v d v \\
y=u v & d y=v d u+u d v \\
& \\
d \vec{l}= & (u \hat{x}+v \hat{y}) \\
& d u+(-v \hat{x}+u \hat{y}) d v \\
h_{u}=\sqrt{u^{2}+v^{2}} & h_{v}=\sqrt{v^{2}+u^{2}}
\end{array}\right\} \begin{array}{l}
d \vec{l}=d u \sqrt{u^{2}+v^{2}} \hat{u}+d v \sqrt{u^{2}+v^{2}} \hat{v} \\
\quad \\
\quad \text { Call them both } h^{\prime}!
\end{array} \quad \hat{u}=\frac{u \hat{x}+v \hat{y}}{\sqrt{u^{2}+v^{2}}} \quad \hat{v}=\frac{-v \hat{x}+u \hat{y}}{\sqrt{u^{2}+v^{2}}}
\end{array}
$$

$$
\begin{aligned}
\vec{r}= & x \hat{x}+y \hat{y}=? \\
\vec{r}= & \frac{1}{2}\left(u^{2}-v^{2}\right) \frac{1}{h}(u \hat{u}-v \hat{v}) \\
& +u v \frac{1}{h}(v \hat{u}+u \hat{v}) \\
= & \frac{1}{h}\left(\frac{1}{2} u^{3}-\frac{1}{2} u v^{2}+\mu / v^{2}\right) \hat{w}+ \\
& +\frac{1}{h}\left(\frac{1}{2} v u^{2}+\frac{1}{2} v^{3}+u^{2} v\right) \hat{v} \\
= & \frac{1}{2 h} h^{2} u \hat{u}+\frac{1}{2 h} h^{2} v \hat{v}
\end{aligned}
$$

$$
h_{n} \hat{u}=u \hat{x}+v \hat{y} \quad h_{v} \hat{v}=-v \hat{x}+u \hat{y}
$$

$$
u h \hat{w}=u^{2} \hat{x}+u v \dot{y} \quad v h \hat{v}=-v^{2} \hat{x}+u v \hat{y}
$$

$$
\rightarrow(u h \hat{u}-v h \hat{v})=\left(u^{2}+v^{2}\right) \hat{x}
$$

$$
\hat{x}=\frac{1}{h}(u \hat{u}-v \hat{v})
$$

$$
h \hat{u}=\frac{u}{h}(u \hat{u}-v \hat{v})+v \hat{y}
$$

$$
\frac{1}{h}\left(h^{2} /-w^{2}\right) \hat{w}+\frac{u v}{n} \hat{v}=v \hat{y}
$$

$$
\dot{y}=\frac{1}{n}(v \hat{u}+u \hat{v})
$$

$\rightarrow \vec{r}=\frac{1}{2} u h \hat{u}+\frac{1}{2} v h \hat{v}$

$$
\begin{array}{ll}
h \hat{w}=u \dot{x}+v \hat{y}, & h \hat{v}=-v \hat{x}+u \hat{y} \\
\frac{d}{d t}(h \hat{u})=\dot{u} \hat{x}+\dot{v} \hat{y} & \frac{d}{d t}(h \hat{v})=-\dot{v} \hat{x}+\dot{u} \hat{y}
\end{array}
$$

$$
\dot{\vec{r}}=\frac{1}{2} \dot{w} \hat{\psi}+\frac{1}{2} u \frac{d}{d t}(h \hat{u})
$$

$$
=\dot{u} \frac{1}{h}(u \dot{u}-v \hat{v})
$$

$$
=-\dot{v} \frac{1}{n}(n \hat{n}-v \hat{v})
$$

$$
+\frac{1}{2} \dot{v} h \hat{v}+\frac{1}{2} v \frac{d}{d t}(h \hat{v})
$$

$$
+\dot{v} \frac{1}{n}(v \hat{u}+u \hat{v})
$$

$$
+i \frac{1}{n}(v \hat{u}+u \hat{v})
$$

$$
i=\frac{1}{h}(u i+v i) \hat{w}
$$

$$
=\frac{1}{h}(-\dot{v} u+i v) \hat{u}
$$

$$
=\frac{1}{2} \dot{u} h \dot{u}+\frac{1}{2} u\left(\frac{1}{h}(u \dot{u}+v \dot{v}) \hat{u}+\frac{1}{h}(-\dot{u} v+u \dot{v}) \dot{v}\right):+\frac{1}{h}(-\dot{u} v+u \dot{v}) \hat{v}
$$

$$
+\frac{1}{h}(v \dot{v}+u i) \hat{v}
$$

$$
+\frac{1}{2} v h \dot{v}+\frac{1}{2} v\left(\frac{1}{h}(-\dot{v} u+i v) \hat{u}+\frac{1}{h}(v \dot{v}+u \dot{u}) \hat{v}\right)
$$

$$
\begin{aligned}
= & \left(\frac{1}{2} \dot{w} h+\frac{1}{2 h}\left(u^{2} \dot{w}+u / \bar{v}\right)+\frac{1}{2 h}\left(-z \sqrt{v} \dot{v}+v^{2} \dot{w}\right)\right) \\
& +\left(\frac{1}{2} \dot{v} h+\frac{1}{2 h}\left(-u v \dot{\psi}+u^{2} \dot{v}+v^{2} \dot{v}+y v / w\right)\right) \hat{v}
\end{aligned}
$$

$=\dot{u} h \hat{u}+\dot{v} h \hat{v} \Rightarrow \dot{\vec{r}}=\dot{u} h \hat{u}+\dot{v} \hat{v}$

- Now let's look @ some examples. We've finally got command of some useful math, so let's use it to do some physics!

Celestial Mechanics

- On HW3 you will work out the velocity $\dot{\vec{r}}$ 丘 acceleration $\ddot{\vec{r}}$ in Spherical polar Coordinates. Heres what SpeC look like:

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta \\
& 0 \leq r<\infty \\
& 0 \leq \theta \leq \pi \\
& 0 \leq \phi<2 \pi
\end{aligned}
$$

$\longleftarrow r$ is dist. from origin, θ is \Varangle down from the z-axis, $\dot{\varepsilon} \phi$ is the X CCW from the x axis in the $x-y$ plane.
NP Q $\theta=0$
$\operatorname{SPC} \theta=\pi$
ϕ is like longitucle.
Equator © $\theta=\pi / 2$
$\phi=2 \pi \quad \dot{\varepsilon} \phi=0$ refer
to the same place.

- Your job on the HW will be to derive $\dot{\vec{r}} \dot{\vec{r}}$. I won't tell you the full answer, but in the special case where $\theta=\pi / 2$ \& doesn't change (i.e., a particle that always remains in the $x-y$ plane, so $\dot{\theta}=\ddot{\theta}=0$) the acceleration is:

$$
\ddot{\vec{r}}=\left(\ddot{r}-r \dot{\phi}^{2}\right) \hat{r}+0 \hat{\theta}+(2 \dot{r} \dot{\phi}+r \ddot{\phi}) \hat{\phi}
$$

$$
\dot{\theta}=\ddot{\theta}=0 .
$$

- What can we do with this? Consider a planet orbiting a star. As long as the mass of the star is much larger than the mass of the planet $\left(M_{s} \gg M_{p}\right)$ then the center of mass of the system is basically right © the center of the star. Well make this the origin $(r=0)$ of our SPC. To a good approximation the planet orbits around this point.
- (As you know, the star \& planet really orbit their COM, which is not quite © the center of the star. We'll ignore this complication in our first pass@ describing planetary orbits!)
- In mechanics you will show that the orbit always lies in a plane. We can set up or SPC however we like, so let's call the plane of the orbit $\theta=\pi / 2$ (i.e., the $x-y$ plane.)
- Newton's Universal Law of Gravitation tells us the force experienced by the planet:

The star is @ $r=0$, so the force on the planet is in the $-\hat{r}$ direction.

T The star is@ $r=0, \dot{\varepsilon}$ the planet is some distance r from the star.

The planet's distance from the star is $r(t)$ ai its angular position is $\phi(t)$. Both change over time, but it stays in the $\theta=\pi / 2$ plane.

- Now Newton's 2nd Law gives us the EOM for the planet

$$
\begin{aligned}
& \vec{F}= M_{p} \vec{a} \Rightarrow M_{p}\left(\ddot{r}-r \dot{\phi}^{2}\right) \hat{r}+0 \hat{\theta}+M_{p}(2 \dot{r} \dot{\phi}+r \ddot{\phi})=-G \frac{M_{s} M_{p}}{r^{2}} \hat{r} \\
& \Rightarrow \ddot{r}-r \dot{\phi}^{2}=-\frac{G M_{s}}{r^{2}} \quad M_{p}(2 \dot{r} \dot{\phi}+r \ddot{\phi})=0 \longleftarrow \vec{F} \text { had no } \phi \\
& \text { component. }
\end{aligned}
$$

- Now we're going to solve these eqns. The next 4 pages are advanced material you'll learn about in THEORETICAL MECHANICS!
- So we've got a pair of coupled, non-linear differential eqns. How do we solve something like this?
- Let's start $w /$ the ϕ equation, as it looks a little simpler. It might not be immediately apparent, but the ϕ egn. can be Written in terms of a total derivative:

$$
\begin{aligned}
& M_{p}(2 \dot{r} \dot{\phi}+r \ddot{\phi})=0 \Rightarrow \frac{1}{r} \frac{d}{d t}\left(M_{p} r^{2} \dot{\phi}\right)=0 \\
& \Rightarrow \frac{d}{d t}\left(M_{p} r^{2} \dot{\phi}\right)=0 \stackrel{\text { Since } \frac{1}{r} \text { is never equal to }}{ } \begin{array}{r}
\text { Zero (that'd require } r \rightarrow \infty \text {) } \\
\text { the other factor must be } 0 .
\end{array}
\end{aligned}
$$

- Since d/dt of $M_{p} r^{2} \dot{\phi}$ is zero, it must be that $M_{p} r^{2} \dot{\phi}$ is a constant. In fact, it's just the planet's angular momentum. We'll call it J :

$$
\rightarrow \quad J=M_{p} r(t)^{2} \dot{\phi}(t)=\text { constant }
$$ The ϕ EOM was simple ble angular momentum is conserved. Yowl learn how to spot sitBoth $r(t)$ \& $\phi(t)$ will change throughout rations like this in MECHANICS. the orbit, but their product $r^{2} \dot{\phi}$ will always have the same, constant valve.

- (Just so we're being complete, the angular momention is $\vec{J}=\vec{r} \times \vec{p}$. We know $\vec{r}=r(t) \hat{r}$. $\vec{p}=M_{p} \dot{\vec{r}}=M_{p}(\dot{r}(t) \hat{r}+r(t) \dot{\phi}(t) \hat{\phi}$ when $\theta=\pi / 2$, so $\vec{J}=M_{p} r(t)^{2} \dot{\phi}(t) \hat{r} \times \hat{\phi}=-M_{p} r(t)^{2} \dot{\phi}(t) \hat{\theta}$. In the $\theta=\pi / 2$ plane, $\hat{\theta}(\theta=\pi / 2)=-\hat{z}$, so $\left.\vec{J}=M_{p} r(t)^{2} \dot{\phi}(t) \hat{z}.\right)$
- Now let's look @ the r egn. Since Mp shows up on both sides it cancels out $\dot{\varepsilon}$ we get:

$$
\ddot{r}(t)-r(t) \dot{\phi}(t)^{2}=-\frac{G M_{s}}{r(t)^{2}}
$$

- This looks complicated bic both r\& $\dot{\text { appear, but we can use }}$ What we learned about J to address this: $j=J / M_{p} \cdot W_{e}$ constant!

$$
\begin{aligned}
& \rightarrow J=M_{p} r(t)^{2} \dot{\phi}(t) \Rightarrow \dot{\phi}(t)=\frac{J}{M_{p} r(t)^{2}}=\frac{j \sum^{r(t)^{2}} \quad \begin{array}{l}
\text { don't expect } \\
\text { change, so } j \text { is also } \\
\text { constant! }
\end{array}}{} \begin{array}{l}
\ddot{r}(t)-\frac{j^{2}}{r(t)^{3}}=-\frac{G M_{s}}{r(t)^{2}}
\end{array}
\end{aligned}
$$

- Now how do we solve this? Great question. But first, let me ask you something. is this really the eqn. you want to solve? If ya solve it, you'll know $r(t)$. But if your goal is to figure out the shape of orbits, wouldn't yo really rather know $r(\phi)$?

Figuring out $r(\phi)$ - distance from the star as a function of ϕ-seems like a better way of describing the shape of the orbit, right?

- Okay, so how do we do that? We can re-write terms like $\dot{r}(t)$. $\ddot{r}(t)$ using the chain ole. That is, if we assume r can be written as a function of $\phi(t)$, then:

$$
\underbrace{\frac{d}{d t} r(\phi)=\frac{d \phi}{d t} \frac{d r(\phi)}{d \phi}}=\frac{j}{r(\phi)^{2}} \frac{d r(\phi)}{d \phi} \longleftarrow \text { Since } \dot{\phi}=\frac{j}{r^{2}} \text { ! }
$$

- For the \ddot{r} term we need to use the chain rule twice, as well as the product rule. You'll do this on HW 3!

$$
\ddot{r}=\frac{d}{d t}(\dot{r})=\frac{d \phi}{d t} \frac{d}{d \phi}(\dot{r})=\frac{d \phi}{d t} \frac{d}{d \phi}\left(\frac{j}{r(\phi)^{2}} \frac{d r(\phi)}{d \phi}\right)=\ldots
$$

- Once we've done this, we arrive @ any eqn. for $r(\phi)$:

$$
\frac{j^{2}}{r(\phi)^{4}} \frac{d^{2} r(\phi)}{d \phi^{2}}-2 \frac{j^{2}}{r(\phi)^{5}}\left(\frac{d r(\phi)}{d \phi}\right)^{2}-\frac{j^{2}}{r(\phi)^{3}}=-\frac{G M_{s}}{r(\phi)^{2}}
$$

- Wait! Doesn't this look even More complicated? Yes, but as is often the case, this is an illusion. If we write the eqn in terms of a new variable it becomes very simple!

$$
\begin{aligned}
& r(\phi)=\frac{1}{u(\phi)} \Rightarrow \frac{d r(\phi)}{d \phi}=-\frac{1}{u(\phi)^{2}} \frac{d u(\phi)}{d \phi}, \frac{d^{2} r(\phi)}{d \phi^{2}}=\ldots \\
& \Rightarrow \frac{d^{2} u(\phi)}{d \phi^{2}}+u(\phi)=\frac{G M_{s}}{j^{2}} \longleftarrow \text { Simpler equation! }
\end{aligned}
$$

- So, we started with two coupled, non-linear differential egns for $r(t) \dot{\varepsilon}(t)$. But we noticed that one of them just reminded us that angular momentum is conserved for this force, while the other one has turned into a simple-looking eqn. for $u(\phi)=1 / r(\phi)$.
- If wed tried to write out our eqns. in Cartesian coords we would have been lost! And if we hadn't set up our SPC the right way, things wald still be a mess!

The Right Choice of Coordinates
Makes Everything Easier!

- You are (or will soon be) learning how to solve this sort of eqn. in your Diff. Eq. class.
- I won't derive the sol'n, but if I write it down ya can easily check that it works.

$$
u(\phi)=\underbrace{c_{1} \cos (\phi)+c_{2} \sin (\phi)}_{\begin{array}{l}
\text { This part satisfies } \\
\frac{d^{2} u}{d \phi^{2}}+u=0
\end{array}}+\underbrace{\frac{M_{s} G}{j^{2}}}_{\begin{array}{l}
\text { This part has } \frac{d^{2}}{\text { sp }^{2}}=0, \\
\text { in when it shaw up } \\
\text { in } u(\phi) \text { we get the RHS. }
\end{array}}
$$

- The eqn. was a second order differential eqn, so its most general sol'n has two unknown constants in it. I called them $c_{1} \varepsilon, c_{2}$. We can pin them down for a particular planet by giving two pieces of info about its position and low velocity.
- Now, as you know, planetary orbits are supposed to be ellipses, right? How do we see this?
- First, let me write the constants $c_{1} \& c_{2}$ in a slightly different form:

$$
\left.\begin{array}{l}
c_{1}=c_{0} \cos \alpha \\
c_{2}=c_{0} \sin \alpha
\end{array}\right\} \left.\quad \begin{aligned}
& \text { I can always do this } \\
& \text { that given any two } c_{1} \\
& \text { a triangle: } \frac{c_{1}^{2}+c_{2}^{2}}{c_{1}}
\end{aligned} \right\rvert\, \begin{aligned}
& c_{2}
\end{aligned}
$$

- So now the sol'n is:

Check that $\mathrm{CM}_{5} / \mathrm{j}^{2}$ has units of $1 /$ length.

$$
\downarrow_{r=\frac{1}{u}}^{u(\phi)}=c_{0} \times(\underbrace{\cos \phi \cos \alpha+\sin \phi \sin \alpha}_{\cos (\phi-\alpha)})+\frac{G M_{s}}{j^{2}}
$$ C_{0} has same units!

The numerator has units of

$$
\Rightarrow \sqrt{r(\phi)=\frac{\left(\frac{j^{2}}{M_{s} a}\right)}{1+\varepsilon \cos (\phi-\alpha)}}
$$ length. The combination $\varepsilon=c_{0} j^{2} /\left(M_{s} G\right)$ is a number with no units.

- What exactly have we shown? First, the shape of the orbit is characterized by three quantities. One of these is the ratio $j^{2} /\left(M_{s} G\right)$, which has units of length. Then there are two plain numbers: the coeff, ε of the \cos in the denominator, and the α that shows up inside the cos.

$$
r(\phi)=\frac{l \longleftarrow}{1+\varepsilon \cos (\phi-\alpha)} \text { This is } j^{2} /\left(M_{s} G\right)
$$

- As expected, when $0<\varepsilon<1$ this is an ELLIPSE w/ semi-major axis a \& semi-minar axis b, tilted \odot angle α :

$$
\begin{aligned}
& a=\frac{j^{2}}{M_{s} G} \times \frac{1}{1-\varepsilon^{2}} \\
& b=\frac{j^{2}}{M_{s} G} \times \frac{1}{\sqrt{1-\varepsilon^{2}}} \\
&
\end{aligned}
$$

Star is Cone of the two foci.

When $\varepsilon=0, a=b=R$ e the orbit is a circle. In that case $j=R^{2} \dot{\phi}=R V \quad(v=R \dot{\phi}$ for U(M) ह́

$$
R=\frac{R^{2} v^{2}}{M_{s} G} \Rightarrow \frac{M_{p} v^{2}}{R}=G \frac{M_{s} M_{p}}{R^{2}}
$$

- But this also describes other sorts of orbits. When $\varepsilon=1$ our formula gives a parabola, and if $\varepsilon>1$ we get a hyperbola. These are the orbits of an object with just enough or more than enough (respectively) velocity to escape the gravitational attraction of the star.

