VELOCITY & ACCELERATION IN OCS

Once we know the scale factors $\not\in$ unit vectors for an OCS, working out $\vec{v} \not\in \vec{a}$ is straightforward. (Though it might be a little tedious!)

As an example, let's consider the "3 dimensional Parabolic Coordinates" (u, v, ϕ) defined by

 $X = \mathcal{U} \vee \cos\phi \quad Y = \mathcal{U} \vee \sin\phi \quad Z = \frac{1}{2}\mathcal{U}^2 - \frac{1}{2}\mathcal{V}^2$ $w/ \quad O \leq \mathcal{U}, \vee < \infty \quad , \quad O \leq \phi < 2\pi$

- Surfaces of const. U are concave-down paraboloids, const. V surfaces are concave-up paraboloids, έ const. φ surfaces are planes.

First let's find the scale factors $\dot{\epsilon}$ unit vectors $\vec{F} = \chi \hat{\chi} + \gamma \hat{\gamma} + 2\hat{\epsilon} = \chi \chi \cos \phi \hat{\chi} + \chi \sqrt{\sin \phi} \hat{\gamma} + (\frac{1}{2} u^2 - \frac{1}{2} v^2) \hat{\epsilon}$ $\frac{\partial \vec{r}}{\partial u} = \sqrt{\cos \phi} \hat{\chi} + \sqrt{\sin \phi} \hat{\gamma} + u \hat{\epsilon} = h_u \hat{u}$ $\rightarrow h_u = (\sqrt{2} \cos^2 \phi + \sqrt{2} \sin^2 \phi + u^2)^{1/2} = \sqrt{u^2 + v^2}$ $\hat{u} = \frac{\sqrt{\cos \phi}}{\sqrt{u^2 + v^2}} \hat{\chi} + \frac{\sqrt{\sin \phi}}{\sqrt{u^2 + v^2}} \hat{\gamma} + \frac{u}{\sqrt{u^2 + v^2}} \hat{\epsilon}$ $\frac{\partial \vec{r}}{\partial v} = \chi \cos \phi \hat{\chi} + \chi \sin \phi \hat{\gamma} - \sqrt{\hat{\epsilon}} = h_v \hat{v}$ $\rightarrow h_v = (u^2 \cos^2 \phi + u^2 \sin^2 \phi + v^2)^{1/2} = \sqrt{u^2 + v^2}$

 $\hat{V} = \frac{u\cos\phi}{\sqrt{u^2 + v^2}} + \frac{u\sin\phi}{\sqrt{u^2 + v^2}} + \frac{v}{\sqrt{u^2 + v^2}} \hat{z}$ $= uv\sin\phi \hat{x} + uv(\cos\phi) \hat{u} = h(\phi)$

 $\frac{\partial \vec{r}}{\partial \phi} = -uv \sin \phi \hat{x} + uv \cos \phi \hat{y} = h_{\phi} \hat{\phi}$ $\rightarrow h_{\phi} = (u^2 v^2 \sin^2 \phi + u^2 v^2 \cos^2 \phi)^{1/2} = uv$

 $\hat{\phi} = -\sin\phi \hat{x} + \cos\phi \hat{y}$

- Now, how do we express \vec{r} in this coordinate system? We get the $u, v, \epsilon \neq$ components of any vector by evaluating its dot product $w/\hat{u}, \hat{v}, \epsilon \neq .$

$$\Gamma_{V} = \vec{r} \cdot \hat{V} = \left(uV \cos\phi \hat{x} + uV \sin\phi \hat{y} + \left(\frac{1}{2}u^{2} - \frac{1}{2}v^{2} \right) \hat{z} \right) \cdot \left(\frac{u\cos\phi \hat{x} + u\sin\phi \hat{y} - v\hat{z}}{\sqrt{u^{2} + \sqrt{z}}} \right)$$

$$= \frac{1}{\sqrt{u^{2}}} \left(\frac{u^{2}V}{\sqrt{u^{2} + \sqrt{z}}} + \frac{1}{2}v^{2} + \frac{1}{2}v^{2} + \frac{1}{2}v^{3} \right)$$

$$= \frac{1}{\sqrt{u^{2} + \sqrt{z}}} \left(\frac{1}{2}u^{2}V + \frac{1}{2}v^{3} \right) = \frac{1}{2}v\sqrt{u^{2} + \sqrt{z}}$$

$$\Gamma_{\phi} = \vec{r} \cdot \hat{\phi} = \left(uv \cos\phi \hat{x} + uv \sin\phi \hat{y} + \left(\frac{1}{2}u^2 + \frac{1}{2}v^2 \right) \hat{z} \right) \cdot \left(-\sin\phi \hat{x} + \cos\phi \hat{y} \right)$$
$$- - uv \cos\phi \sin\phi + uv \sin\phi \cos\phi = 0$$

1ut v

$$\vec{F} = \frac{1}{2} n \sqrt{u^2 + v^2} \hat{u} + \frac{1}{2} \sqrt{u^2 + v^2} \hat{v}$$

$$\vec{F} = \frac{1}{2} n \sqrt{u^2 + v^2} \hat{u} + \frac{1}{2} \sqrt{u^2 + v^2} \hat{v}$$

$$just like in cylindrical polar coords. All the info about ϕ is in $\hat{u} \notin \hat{v}.$$$

This is how we express
$$\vec{r}$$
 in any orthogonal coordinate
system: Start $W/\vec{r} = X \hat{X} + y \hat{y} + 2\hat{z}$; express X, y, \vec{e}, \vec{z} in terms of
 $q_{1,1}q_{2,1} \hat{e} q_{3;}$, find the scale factors $h_{1,1}h_{2,1}h_{3}$ \hat{e} unit vectors $\hat{e}_{1,1}$
 $\hat{e}_{1,2}, \hat{e}, \hat{q}_{3;}$, then work out the components of \vec{r} by taking
the dot products $\hat{e}_{1} \cdot \vec{r}$, $\hat{e}_{2} \cdot \vec{r}$, and $\hat{e}_{3} \cdot \vec{r}$.
Remember that some of the components of \vec{r} may be
zero! In CPC, $\vec{r} = p\hat{p} + \hat{z}\hat{z}$. In SPC it's $\vec{r} = r\hat{r}$. Here, for
these parabolic coordinates we found $\hat{u} \in \hat{v}$ components
but no $\hat{\phi}$ component.

So now that we have \vec{r} , how do we find the velocity? There are multiple ways to do this. If you are describing the position of a moving object then $u, v, \notin \phi$ will all be functions of time. So you could just take the to derivative of \vec{r} :

$\frac{d\vec{r}}{dt} = \frac{d}{dt} \left(\frac{1}{2} \ln \sqrt{n^2 + \sqrt{2}} \hat{n} + \frac{1}{2} \sqrt{\sqrt{n^2 + \sqrt{2}}} \hat{\gamma} \right)$

However, you need to remember that $\hat{u} \notin \hat{v}$ depend on $u, v, \notin \phi$, which are all functions of t when we're talking about a moving object.

 $\frac{d}{dt}(\hat{u}) = \frac{\partial u}{\partial t} \frac{\partial \hat{u}}{\partial t} + \frac{\partial v}{\partial t} \frac{\partial \hat{u}}{\partial t} + \frac{\partial \phi}{\partial t} \frac{\partial \hat{u}}{\partial t} = \hat{u} \frac{\partial \hat{u}}{\partial t} + \hat{v} \frac{\partial \hat{u}}{\partial v} + \hat{\phi} \frac{\partial \hat{u}}{\partial \phi}$ Working out dot of $\hat{u}, \hat{v}, \hat{e}, \hat{\phi}$ may be complicated.

Another way to calculate the velocity in an OCS is to start $w/dt = \dot{x}\dot{x} + \dot{y}\dot{y} + \dot{z}\dot{z}$ in Cartesian courds; work out $\dot{x}, \dot{y}, \dot{z}, \dot{z}$ in terms of $q_{1,3}q_{2,3}q_{3}$ \dot{z}, \dot{q}_{3} ; and then use dot products to find the $\hat{e}_{1}, \hat{e}_{2}, \dot{z}, \dot{e}_{3}$ components.

But probably the <u>easiest</u> way to find $d\vec{r}/dt$ in an orthogonal coordinate system is to remember that \vec{r} - the position - is just a (vector) function of 3 coords 9,,92,

 $\not\in$ q_3 . If the object's post is changing then $q_1, q_2, \not\in q_3$ are functions of t. So:

RULE

 $\frac{d}{dt}\left(\overrightarrow{r}\right) = \frac{\partial q_1}{\partial t} \frac{\partial \overrightarrow{r}}{\partial q_1} + \frac{\partial q_2}{\partial t} \frac{\partial \overrightarrow{r}}{\partial t} + \frac{\partial q_3}{\partial t} \frac{\partial \overrightarrow{r}}{\partial q_3}$ $h_1 \hat{e}_1 \quad h_2 \hat{e}_2 \quad h_3 \hat{e}_3$

 $\frac{d\vec{r}}{dt} = \hat{q}_{1}h_{1}\hat{e}_{1} + \hat{q}_{2}h_{2}\hat{e}_{2} + \hat{q}_{3}h_{3}\hat{e}_{3}$

This a general result that is two for any OCS. It's just the statement that \vec{r} is a function of q_{i}, q_{2}, q_{3} , and $\vec{r}/\vec{s}q_{i} = h_{i}\hat{e}_{i}$. Another way of look $n_{3} \in it$ is that a small change in q_{i} moves you a distance $h_{i}dq_{i}$ in the \hat{e}_{i} direction. So if the coords change a small amant this displaces the object (changes its position) by

 $d\vec{r} = h_1 dq_1 \hat{e}_1 + h_2 dq_2 \hat{e}_2 + h_3 dq_3 \hat{e}_3$

Dividing this by dt to get the rate of displacement gives the result for dr/dt.

So, For the 3-D parabolic coordinates, the velocity

 $\frac{d\hat{r}}{dt} = \hat{u} \sqrt{u^2 + v^2} \hat{u} + \hat{v} \sqrt{u^2 + v^2} \hat{v} + \hat{\phi} u v \hat{\phi}$

Any one of the calculations described above will (eventually) lead to this result.

Now what about the acceleration $\frac{d^2\vec{r}}{dt^2}$? Again, there are different ways of approaching this. For instance, we could start in Cartesian w/ $\frac{d^2\vec{r}}{dt^2} = \ddot{x}\dot{x} + \ddot{y}\dot{y} + \ddot{z}\dot{z}$; use what we know about the OCS to express \ddot{x} , \ddot{y} , \dot{z} \ddot{z} in terms of 9, 92, 93 \dot{z} their time derivatives, \dot{z} then evaluate dot products to get the \hat{e}_1 , \hat{e}_2 , \dot{z} , \hat{e}_3 components.

- Or we could just take d/dt of the velocity:

 $\frac{d^{LF}}{dt^{2}} = \frac{d}{dt} \left(\dot{n} \sqrt{u^{2} + v^{2}} \hat{u} + \dot{v} \sqrt{u^{2} + v^{2}} \hat{v} + \dot{\phi} u v \hat{\phi} \right)$

- Some of these derivatives are easy to evaluate; others require more work.

- $\frac{d}{dt}\left(\hat{n}\sqrt{u^{2}+v^{2}}\hat{n}\right) = \tilde{n}\sqrt{u^{2}+v^{2}}\hat{n} + \tilde{n}\frac{d}{2\sqrt{u^{2}+v^{2}}}\left(2n\tilde{u}+2v\tilde{v}\right)\hat{n} + \tilde{n}\sqrt{u^{2}+v^{2}}\frac{d\hat{n}}{dt}$ What's that last term? It involves d_{dt} of \hat{n} . $\frac{d\hat{n}}{dt} = \frac{d}{dt}\left(\frac{v\cos\phi}{\sqrt{u^{2}+v^{2}}}\hat{x} + \frac{v\sin\phi}{\sqrt{u^{2}+v^{2}}}\hat{y} + \frac{n}{\sqrt{u^{2}+v^{2}}}\hat{z}\right)$
- This changes over time! Unlike $\hat{x}, \hat{y}, \dot{z}, \hat{z}$, derivatives of the unit vectors for an OCS usually aren't zero.
- $\frac{d\hat{u}}{dt} = \hat{u}\frac{\partial\hat{u}}{\partial u} + \hat{v}\frac{\partial\hat{u}}{\partial v} + \hat{\phi}\frac{\partial\hat{u}}{\partial \phi}$ Notice: $\frac{d\hat{u}}{dt}$ has no \hat{u} Notice: $\frac{d\hat{u}}{dt}$ has no \hat{u} Notice: $\frac{d\hat{u}}{dt}$ has no \hat{u} $\frac{d\hat{u}}{dt} = \frac{(n\hat{v} v\hat{u})}{u^2 + v^2} + \frac{v\hat{\phi}}{\partial \phi} + \frac{v\hat{\phi}}{dt}$ Sense, because $\hat{u} \cdot \hat{u} = 1$ $\frac{d\hat{v}}{dt} = \frac{(n\hat{v} v\hat{u})}{u^2 + v^2} + \frac{v\hat{\phi}}{u^2 + v^2} + \frac{d(\hat{u} \cdot \hat{u})}{dt} = 2\hat{u} \cdot \frac{d\hat{u}}{dt}$ $\frac{d\hat{v}}{dt} = \frac{(v\hat{u} u\hat{v})}{u^2 + v^2} + \frac{v\hat{\phi}}{u^2 + v^2} + \frac{\partial}{u^2 + v^2}$ Notice: $\frac{d\hat{u}}{dt}$ has no \hat{u} Notice: $\frac{d\hat{u}}{dt}$ has no \hat{u}
 - $\frac{d\hat{\phi}}{dt} = -\frac{\sqrt{\hat{\phi}}}{\sqrt{n^2 + \sqrt{2}}}\hat{n} \frac{n\hat{\phi}}{\sqrt{n^2 + \sqrt{2}}}\hat{y}$
- Anyway, just remember that you have to carefully evaluate d/dt of unit vectors in an OCS. because unlike $\hat{x}, \hat{y}, \hat{z}$ the derivatives of $\hat{e}, \hat{e}_2, \hat{e}_3$ usually aren't zero.
- For 3-D Parabolic Coordinates, a long-ish calculation gives

