
GAUSS 'S LAW FOR A SPHERICALLY SYMMETRIC

DISTRIBUTION OF CHARGE

- Let's look @ an example of how  we can  use Gauss 's

Law to  determine the electric field of a very

symmetric  distribution  of charge without setting up

and evaluating Coulomb integrals .

-
First

,
Gauss 's Law  is alwaystrue

.
It  is a basic

fact about electric fields & the charges that produce

them : ←
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- We often talk about charge being spread over  an

object  or throughout  its volume
. So once we

describe
a charge distribution

, you may have a

particularsurface  in  mind ( i.e.
,

a sphere ,
or a cube

,

etc ) .

- But usually that  is not the surface we are

talking about  with Gauss 's Law . Instead
,

we

have some imaginary surface in  mind
.

It  may

( as we 'll see below ) have a similar shape but a



different size .
Or  it  may be some entirelydifferent

shape .

- To avoid confusion
,

I  will use 5 and V to

denote a surface and volume associated with

an actual charged object . And I  will use as

and AV to  describe a

'

Gaussian surface '
- a

Surface I am using
in Gauss 's Law  - and the

volume inside it .
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' / I This Gaussian surface←
has  a totally unrelated

Shape .

This cube is a Gaussian surface

w/ the same shape as the object ,

but  it's bigger
.

- If I tell you about a distribution of charge ,
and

then I describe a GS . to
you ,

it should be

straightforward ( in principle ) for  
ya

to tell me how

much of the charge  is enclosed by the G. S
.
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- Now
,

Gauss 's Law can help us determine E when

the distribution of charge producing the electric

field is Vey symmetric .

- The procedure for finding E will involve Gaussian

surfaces that have the same basic shape or

symmetry as the charge .
So let's look @ a simple

example to see how  it  works .

- Suppose I show  

you
a sphere  w/ radius R that has

a uniform charge density .

We'll call the constant

Charge density fo .

- This distribution  of charge has SPHERICAL SYMMETRY

because I can give you a complete description  of

the charge using only
the distance  r from a single

point - the center  of the sphere :
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- What surfaces have spherical symmetry ? Well
,

what

surfaces can I describe using only the distance r

from a central point ? Spheres .

- So we 'll use spheres w/ radius r & centered an the

same point as our Gaussian surfaces .



- If r > R
,

our Cris
. completely encloses the charged

sphere .

If  rt R
,

the G. s . encloses only part  of  it .

The charge enclosed by a a. S .  w/ r > Riss
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- This makes sense . All the charge in  ar sphere
- its

just 1413 ) ARE times go since the density is constant - is

inside the G. s .  in this case .

- If  RL R
,

the G. S
. encloses only part of the charge .
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- So how does this let us determine E ?

- First
,

we expect that the symmetries of the

charge distribution tell us about E
.

- In this case
,

if we use SPC w/ the
origin @

the center of the sphere ,
it seems like E

could depend on r
,

but  not 0 or of .

We expect
E to get bigger or smaller  as we more toward

or away
from the sphere .

But  it looks the

same from all directions ( spherical symmetry ! )

so 0 & ¢ can 't be relevant .

- Likewise
, symmetry suggests

E could point  in

the I direction
,

but not E or To .

← By symmetry ,
contributions to E

,

,
'

'

'

'

•

¥
in E e: & dir .  will all canal out

.

Net  result  is E in  I direction .

-
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,

A  spherically symm . charge distribution

ooks the same from two pts .  w/ same

r & different O
, ¢ .

- So a spherically symmetric charge distribution

( w/ r
-

- O @ its center ) implies an electric field

of the form :

Etr ) = Elr ) I



- Now recall Gauss 's Law !

fa.s.doi.ir Ecr ) = 9E÷

- Suppose the a. s .  is a sphere centered @ r= O

( the center of the charged sphere ) .

Then :

I

fadgoi.ir Ecr ) =

foOsinOrZrTI
Elr )

= 4 it r2 Elr )

We don't know Elr ) yet ,
but this doesn't stop

us from evaluating the integral b/c every point
on our G. S .

has the same value of r
.

Its a

sphere !

-
If the radius of the G. S

.  is r > R
,

then gene IztR3fo :
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- In  other words
,

outside l r > R ) a spherically symm .

distribution of charge ,
the electric field is the

same as for a point charge .

- But what about  RLR ? When the G. s .  is smaller

than the charged sphere it encloses only part

of  its charge : qenc
= Iz Mrs So

↳ 4itr/ECr) =etotzitrlgo

⇒ ECRLR ) = ¥q Iz IT r
To

This
has

the same units as Elr > R )
,

but  instead

of a factor of 12%2 it has a factor  of  r .
We

could also write it as :

ELRLR ) = ¥q¥tR3% Es
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- So inside the uniform charged sphere ,
the

electric field
grows linearly .

At r= R
,

the

two
expressions

( for  r > R & re R )
agree ,

-
If we use Q = ¥itR3go ,

then E is :
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- Here's a plot :
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- In this example ,
our expressions

for
gene were

specific to a uniform I f
= constant ) charge density .

- But everything else we did ( our assumptions about

E
,

our expressions
for the flux ) depended only an

spherical symmetry ,

- Therefore
,

if  we had flr ) rather than fo
-

which is still spherically symmetric - the analysis

would be exactly the same except for the part

where we calculate gene
!

- Gauss 's Law can help us out  in three situations :

1) Spherical symmetry : gtr ) = glr )
,

where r  is

the distance from a central point l r=o ) .

2) Cylindrical or axial Symmetry : gtr ) = Gls )
,

where

s is the distance from a central axis ( s -
- o ) .

3) Planar Symmetry : gtr ) = plz )
,

where Z  is the

distance from a central plane I E- O ) .



- Gauss 's Law is alway true
,

for
any

G. s
.

But

those 3 situations are the only ones where we

can exploit  it to find E without having to set

up & evaluate Coulomb integrals .

- Finally
,

to use Gauss 's Law we have to be

able to
say something about the flux

Safari . E

even though we dont yet Kiran E
.

The key is

to identify what we def know about E and then

pick the right surface
.

- If we know that E depends on a single co -

ordinate u & has direction E :

E = Ecu ) E

then we look for a G. s .
that has u

-

- constant
,

or is made
up  of  multiple surfaces some  of

which have u = constant E
.

some of which

have ri . E = o .

- For example ,
with planar symmetry I f

-

- plz ) ) we

expect E = ELE ) I
.

So for  our a. s
. we  might use

' boxes
'

w/ bottom @ Z = Zi
, top @ Z  = Zz ,

and sides  where
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