SURFACE CHARGE & DISCONTINUITY IN Ē

In class we said that the electric field is discontinuous C a pt. on a surface where there's a surface charge density. a surface charge density.

Let 3 be some surface, open or closed, with a surface charge density on it. P is a specific point of the surface, $\hat{n}(P)$ is a unit vector perp. to 5 C pt. P, and O(P) is the surface charge density @ that pt. Whatever direction n is pointing, we'll call the region on that side of S "OUT" & the region on the other side "IN".

Then the exact statement is

5 "OUT" F.P $\lim_{\vec{r} \to P^{\text{out}}} \vec{E}(\vec{r}) - \lim_{\vec{r} \to P^{\text{in}}} \vec{E}(\vec{r}) = \frac{\sigma(P)}{\varepsilon_0} \hat{\eta}(P)$ Behavior of É Behavior of E They don't agree as we approach if $\sigma(P) \neq 0$ as we approach

P from "OUT" P from "IN" sicle SIDE

Usually we have some description of $\vec{E}(\vec{r}) \notin V(\vec{r})$ on either side of S, maybe from Gauss's Law or some other calculation. Then we usually just write:

 $\vec{E}_{out}(P) - \vec{E}_{in}(P) = \frac{\sigma(P)}{\varepsilon_o} \hat{n}(P)$ $V_{out}(P) = V_{in}(P)$

Our results for È an either side of the surface don't agree at the sur-However, the potential is always continuous.

pt. P. By "tiny" we mean small enough that both o E n are approximately constant over the tiny patch of surface.

Now look C a tiny Gaussian surface shaped like a box w/ thickness & perp. to the surface & faces of area 'A' parallel to the surface. Top Face has 3tarea A and 4t $\hat{n}_{top} = \hat{n}(P)$ δ

Sides have n_{sides} parallel to surface. Thickness is δ.

1 Bottom Frice has area A $\xi \hat{n}_{\mu\nu} = -\hat{n}(P)$

By construction (because of how we set it up), the little box encloses a patch of surface w/ area A that has an approximately constant charge density on it equal to O(P). So our Gaussian surface encloses charge genc ~ J(P) × A.

What's the flux of E through this box?

Let's look C each part. For the top, the face is parallel to our little patch of surface so $\hat{n}_{top} = \hat{n}(P)$. Since or constant, we'd expect É is also approximately constant over the face; $\tilde{E} \simeq \tilde{E}_{out}(\delta/2)$. So:

 $\int_{\text{Top}} da \, \hat{n}_{\text{top}} \cdot \vec{E} \simeq A \, \hat{n}(P) \cdot \vec{E}_{out}(\delta/z)$

The same argument applies to the bottom, except there $\hat{n}_{bot} = -\hat{n}(P)$ (it needs to point from inside ar h.s. to outside) and $\vec{E} \simeq \vec{E}_{in}(-\delta/z)$:

 $\int da \hat{n}_{bot} \cdot \vec{E} \simeq -A \hat{n}(P) \cdot \vec{E}_{in}(-\delta/2)$

Finally, the sides involve the parts of É parallel to our little patch of surface. However, if I let S be very small I expect their contribution to the flux shall be proportional to S. $\int da \hat{n}_{sides} \cdot \vec{E} = \delta \times (stuff) \leftarrow If \delta is small, \hat{n} \cdot \vec{E} c \log n' + Vary much from pt. to pt.$

on the sides ξ , $\overline{\Phi}_{E}$ of area which is a SI

Now, do we expect δ to be very small? <u>YES</u>. We want to know about any discontinuities in \vec{E} @ the surface, which means a <u>finite</u> difference in \vec{E} @ two infinitesimally nearby points. So as we let $\delta \rightarrow 0$ we get:

 $\lim_{\delta \to 0} \frac{\partial da \hat{n} \cdot \vec{E}}{\delta_{\tau 0}} = \lim_{\delta \to 0} A \hat{n}(P) \cdot \vec{E}_{ovt} \left(\frac{\delta}{2}\right) + \lim_{\delta \to 0} A \left(-\hat{n}(P)\right) \cdot \vec{E}_{oot} \left(-\delta/2\right)$ + lim &x (stuff) 5-70

As S=0, flux through sides is negligible (for SKC JA it is much smaller than top & bottom contributions)

lim <u>Penc</u> <u>1</u> $\sigma(P) \times A \leftarrow All charge on surface, so any$ $<math>\delta \rightarrow 0 \quad \varepsilon_0 \quad \varepsilon_0 \quad \delta no matter hav small means$ 8 no matter has small means $q_{enc} = \sigma(P) A,$

 $\widehat{(AUSS:} \qquad \widehat{An(P)} \cdot \overrightarrow{E}_{out}(P) - \widehat{An(P)} \cdot \overrightarrow{E}_{in}(P) = A \frac{\overline{\sigma(P)}}{\varepsilon_{o}}$

- This tells us that the part of É perp. to the surface has a discontinuity @ P. But what about the other components of É, which are parallel to the surface @ P?

We know that $\vec{\nabla} \times \vec{E} = 0$ in electrostatics, so STOKES'S THEOREM tells us

 $\int da \hat{n} \cdot (\vec{\nabla} \times \vec{E}) = \oint d\vec{L} \cdot \vec{E} = 0 \quad \text{since } \vec{\nabla} \times \vec{E} = 0$

We can use this to figure out what happens to the other components of \vec{E} @ the surface. Just look @ a closed rectangular loop w/ segments of length L parallel to 5 & segments of length δ perp. to 5:

In electrostatics, integrating $d\vec{I} \cdot \vec{E}$ around this cloud loop has to give zero, since $\vec{\nabla} \times \vec{E} = 0$.

The sides perp. to S cancel each other. So far the whole thing to equal zero, the cartributruns from the two segments parallel to the surface have to cancel each other. As $\delta \rightarrow 0$ this only Works if the parts of \vec{E} parallel to S have the same value infinitesimally above ϵ below the surface.

Therefore, the parts of É parallel to 5 are continuous. They don't exhibit any finny behaviour because of 0.

Putting this all together $-\hat{n}\cdot\vec{E}$ has a discontinuity C 5 but not the components of \vec{E} parallel to 5 - we have:

 $\vec{E}_{out}(P) - \vec{E}_{in}(P) = \frac{\sigma(P)}{\varepsilon_{p}} \hat{n} \qquad V_{out}(P) = V_{in}(P)$

This is true C any point P on S, even if σ Changes as we move around S. So if $\sigma(P_2) > \sigma(P_1)$, the "jump" in the normal component of E is larger C P_2 than C P_1 .

However, we made some assumptions deriving this result!

It's always true that if I zoom in far enough on a smooth surface, I find a little patch where \hat{n} is basically constant, Is that true for σ ?

What if I had something like a sphere w/ a smooth surface charge $\sigma(0,\phi)$, as well as a line charge density that wraps around the

equator?

"Smooth" means $O(\theta, \phi)$ Can vary from pt. to pt., but not too abruptly. If P & P' are infinitesimally close then O(P') is only infinitesimally larger or smaller than O(P). We can always zoom in & find a triny patch around P where $q \sim O(P) \times A$, and av derivation works.

But near a pt on the equator, σ looks like $\sigma(\theta, \phi) + \lambda \delta(\theta - \pi/2)$. Fooming m on smaller ϵ smaller areas, we never find $q \sim (const) \times A$. Our argument breaks down, So really what we showed is that the normal component of \vec{E} experiences a finite discontinuity $\sigma(P)/\varepsilon_0$ at any point P where σ is "smooth." Our criteria for smooth is basically that if I look C a small enargh area A around the pt. P I find $q \simeq \sigma(P) \cdot A$. If the surface also has something finny like a discontinuity in σC P, or a line or pt. charge C P, or argument breaks down.