
FEI CYLINDRICAL POLAR COORDS : 5,8
,
I

- Let's say we want to describe an object
as it moves around in 3 dimensions

,
and for

whatever reason (more on this later ) we want

to use Cylindrical Polar Coordinates ( CPC) . Let's

go through every step .

- First
,
how are CPC related to Cartesian co -

ordinates ?
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- Let's work out the scale factors he ,h¢ , hz and

unit vectors f , § , I , [
Always look for simplifications
like cost tsinZ=1 !
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- Notice that f e: if both depend on ¢ when

we write them in terms of I e: yn .



- Next
,
lets express the position F entirely in

CPC .
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No ¢ component ! All the
info about ¢ is contained
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- Okay , suppose we're describing an object moving
around . At different times it may be getting
closer to or further from the Z - axis

, curling
around the axis

,
or moving up or down parallel

to the axis .
In other words

, f , 0 , E. 2- could

all be changing .
So we 'll say they are functions

Of t , ← § changes if ¢ changes !
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- different positrons labeled by
XL ¥ different values of 5,0 , E: -2 .



- Now how do we write its velocity ? I can think

of 3 different ways to work this out . Let's look

@ each one .

(1) Start w/ F in CPC & take its derivative

with respect to time
.
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To save space we usually use a dot above a

quantity to indicate its time derivative
, &

we don't explicitly write arguments like ( t ) or

Ctl ) .
So
I

No § term in T
,
but

1- we get one in J because

I = Ff t poi of + EE drat -- off !

+
This is nice and compact , but it's

up to us to remember that e. 0, c:

Z are functions of t
,
and f e: To are

functions of ¢ !



(2) Start w/ F in Cartesian cards
,
take its time

derivative
,
then use def 'ns of CPC & dot products to

work out components .
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we computed it

differently .



(3) Velocity is the infinitesimal displacement dirdivided
by the infinitesimal dt over which it

happened .
For any OCS

dir = h
, day ,

E
,
t hzd9zEz t h3d9z^e3

So for CPC ( he -- I , hey =p, hz -- t )

dir = de f t p del § t dzI

↳ Ife = Ife ftp.#0tIEE-- J

- Of course all 3 calculations give the same J .

The last one is much simpler , right ?

- Unfortunately ,
to work out the object 's acceleration

we have to follow approach 1 or 2 - there's no

shortcut like method 3
.
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- You could also start w/ I -- x'
'

It I t
'

II in Cartesian

coords
,
use X -- p cosy & y= ps.no/ to replace ii e:

'

y
'

w/ derivatives of p e: ¢ , & then use dot - products

of I w/ f e: § to work out ap & a ¢ .

- Before we do an example , let's collect our results

for position , velocity , & acceleration .

←
Again , notice I'm writing f

instead

F = f f t Z I of dfft
'

,
and To instead of 5/10/14),

etc .

T -- f ftp.go/t II c- Speed : hit --FF -
- ftp.fjofzi

I = ( f - pop) ft ( 2pct + pot )§ + IE

- How would we use these results ?

- Well
, why do we use any OCS besides Cartesian

coordinates ?

- We use an OCS when it makes describing
the system we're studying easier .

- For example , suppose you have a bowl shaped
like a hemisphere of radius R & you let a

marble roll around inside it .

I
Put the origin here & use SPC

.

Then r -- R and only -0 e: ¢

change as the marble rolls

around .
In Cartesian cards ,

all 3 ( x , y, 't )
would be

changing .



- In that case it's the geometry of the system
that's telling you to use SPC .

- Sometimes
,
the right OCS makes it easier to

describe fares . For example , suppose you have

a mass M connected to a vertical rod by a

spring w/ spring constant K . The point where

the spring connects to the rod can move up

or down
,
the spring can stretch or be compressed

as the mass moves out or in , and the mass

can also circle around the rod .

- Sure
,
this is contrived

,
but can we write

Newton 's 2nd Law for the mass ?

- There are two forces acting on M : Eg pulls done

& Espn pulls in towards or pushes out from the rod

depending on whether the spring is compressed or

stretched .
We 'll use leg for the equilibrium length of

the spring .
C
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Epi.
y , & z directions . But writing← ,
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⇒ Use Cylindrical Polar
-

,

Coordinates
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- Newton 's 2nd law says Emt = ME ,
and we

already worked out I in CPC :

Mx ( ( E - pop ) ftfzpiotpoj ) To + EE ) = - MGI - Kip - leg) f

p - comp : Mx ( f - poi
'

) = - K ( p- leg )

¢ - comp : Mx ( 2fojtp§ ) = O

Z - comp : ME = - M g

- There are lots of solutions to these equations -

lots of ways the mass can move - and ya 'll

learn how to solve them in Phys 314 .
Lets

look @ just one of the many possibilities .

- The z - comp . tells us M is pulled down & its

vertical motion is freefall ( az = - g) :

↳
Starts @ t -- Zito)

IME = - Mlg → dI¥# = -

g w/ Vz -- Vzlto) @ time
to .

⇒ Ztt) = 2- Lto) t Vzlto)xlt - to ) - tzgxlt - to)
'



- The ¢ - component is interesting !

M x ( Zip of + poj ) = O
← No force in To direct

T

= f¥e( pzjo )
←

Check : tattle'd) - fc2.poiojtpz.jo)
= Zoijotpojv

⇒ f- If ( M fol ) = O ← This only works if

Mpzjo = a constant !

⇒ Mpzjo = constant

- This is just the statement that one
componentof M 's Angular Momentum [ = Tx F
is conserved b/c theres no force in the §
direction .

- We'll call the constant Lz ( its the Z - comp .

of the angular momentum ) ,
so

M pzjo = Lz
← However M is moving ,

p e: to satisfy this eqn !

- Finally ,
the p - component is

→E - poi ' = - Ya ( p - leg) use it -- ¥.

f - p (m÷ )
'

= - Yale - leg ) I

⇒ f - (¥5# = - ¥4 - leg )

- There are lots of Soltis of this equation
depending on how M starts off @ t = to .



- One solution is p = constant
,
so f -- O e: f - O .

For that to work we'd need just the right
values of p - how far its stretched out - and

Lz - how much angular momentum it has from

spinning ( of ) around the rod
.

O

§ - poi
'
= - Yale - leg )

- (¥ )
'

# = - File - leg)

- For example , suppose k= 103 Nlm
, leg = 0.1M

,
and

M = 20 grams
= 2×10-2 kg .

- (¥
,g
)
-

pts = - w://I-gxlp-o.IM )
- Suppose you stretch it out so p

-
- 15cm = 0.15M &

spin it around the rod .

1- (tgYo÷mp = -11%1477 xcoeosm )

→ Lz = 0.02kg x ( to.IN/Yg-xO.o5mxCO.s-m)3 )
""

= 0.0581 kgim
S

Lz = 0.0581 ksj = M p 'd = 0.02kg -10.1572/0

⇒ & = 129.1 radlg

- So p= 0.15M & If = 129.1 radls - both constant -

is one solution of these equations .
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For k = 103 Nlm

, leg = O - Im
,

I - 0.15M -71
← 0.15M - i and 14=0.02 kg ,

if yal l

-
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pull the mass art to
1 eirllllllr

.
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i p - 0.15M & spin
it around

-

-
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-

I =
.
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the rod @ of = 129.1 radls it

I

I -

,

I will move in a circle

\ l

l
. ( p was 't change ) as it drops .-

l
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- This makes sense ! For constant g
-

- 0.15M & Io -- 129.1 racks
the § comp . of J is Voy =p of - 19.37ms .

Maintainingthat constant speed requires a centripetalaccelerationV¢4p = 2.5×103%2 .
Thats exactly what we

get from the spring !

Espn = - 103dm x ( 0.15M - 0.1ns ) f = - 50N f

→ EMI = - so.ogf= - 250075

- Looking back @ what we did
,
E
. keeping in

mind that p 30 in CPC
, can you see why

this kind of solution doesn't exist for pc leg ?

- Again , this example is a little contrived
.
And

there are many more complicated solhs to

the equations we worked out . The point is

just to show you that even that first step -

writing out Emt = ME - may be easier w/ an OCS !


